
ATME COLLEGE OF ENGINEERING

13th KM Stone, Bannur Road, Mysore - 560 028

DEPARTMENT OF COMPUTER SCIENCE AND DESIGN

(ACADEMIC YEAR 2023-24)

LESSON NOTES

SUBJECT: OPERATING SYSTEMS

SUB CODE: BCS303
SEMESTER: III

OS (BCS303)

Dept. of CSD, ATMECE Page 1

Objectives

INSTITUTIONAL MISSION AND VISION

 To provide quality education and groom top-notch professionals, entrepreneurs and leaders

for different fields of engineering, technology and management.

 To open a Training-R & D-Design-Consultancy cell in each department, gradually introduce

doctoral and postdoctoral programs, encourage basic & applied research in areas of social

relevance, and develop the institute as a center of excellence.

 To develop academic, professional and financial alliances with the industry as well as the

academia at national and transnational levels.

 To develop academic, professional and financial alliances with the industry as well as the

academia at national and transnational levels.

 To cultivate strong community relationships and involve the students and the staff in local

community service.

 To constantly enhance the value of the educational inputs with the participation of students,

faculty, parents and industry.

Vision

 Development of academically excellent, culturally vibrant, socially responsible and

globally competent human resources.

Mission

 To keep pace with advancements in knowledge and make the students competitive and

capable at the global level.

 To create an environment for the students to acquire the right physical, intellectual,

emotional and moral foundations and shine as torch bearers of tomorrow's society.

 To strive to attain ever-higher benchmarks of educational excellence.

OS (BCS303)

Dept. of CSD, ATMECE Page 2

Department of Computer Science & Design

Vision of the Department

 To develop highly talented individuals in Computer Science and Engineering to

deal with real world challenges in industry, education, research and society.

Mission of the Department

 To inculcate professional behaviour, strong ethical values, innovative research

capabilities and leadership abilities in the young minds & to provide a teaching

environment that emphasizes depth, originality and critical thinking.

 Motivate students to put their thoughts and ideas adoptable by industry or to pursue

higher studies leading to research

Program Educational Objectives (PEO'S):

1. Empower students with a strong basis in the mathematical, scientific and

engineering fundamentals to solve computational problems and to prepare them for

employment, higher learning and R&D.

2. Gain technical knowledge, skills and awareness of current technologies of computer

science engineering and to develop an ability to design and provide novel

engineering solutions for software/hardware problems through entrepreneurial

skills.

3. Exposure to emerging technologies and work in teams on interdisciplinary projects

with effective communication skills and leadership qualities.

4. Ability to function ethically and responsibly in a rapidly changing environment by

applying innovative ideas in the latest technology, to become effective professionals

in Computer Science to bear a life-long career in related areas.

Program Specific Outcomes (PSOs)

PSO1: Ability to apply skills in the field of algorithms, database design, web design,

cloud computing and data analytics.

PSO2: Apply knowledge in the field of computer networks for building network and

internet based applications.

OS (BCS303)

Dept. of CSD, ATMECE Page 3

OPERATING SYSTEMS

(Effective from the academic year 2023 -2024) SEMESTER –

III

Subject Code BCS303 IA Marks 40

Number of Lecture Hours/Week 3:0:2 Exam Marks 60

Total Number of Lecture Hours 40+20 Exam Hours 03

CREDITS – 4

Course objectives: This course will enable students to

 Introduce concepts and terminology used in OS

 Explain threading and multithreaded systems

 Illustrate process synchronization and concept of Deadlock

 Introduce Memory and Virtual memory management, File system and storage

techniques

Module – 1 Teachin

g Hours

Introduction to operating systems, System structures: What operating systems do;

Computer System organization; Computer System architecture; Operating System

structure; Operating System operations; Process management; Memory management;

Storage management; Protection and Security; Distributed system; Special-purpose

systems; Computing environments.

Operating System Services: User - Operating System interface; System calls; Types of

system calls; System programs; Operating system design and implementation; Operating

System structure; Virtual machines; Operating System debugging, Operating System

generation; System boot.

08 Hours

Module – 2

Process Management: Process concept; Process scheduling; Operations on processes;

Inter process communication

Multi-threaded Programming: Overview; Multithreading models; Thread Libraries;

Threading issues.

Process Scheduling: Basic concepts; Scheduling Criteria; Scheduling Algorithms; Thread

scheduling; Multiple-processor scheduling,

08 Hours

Module – 3

Process Synchronization: Synchronization: The critical section problem; Peterson’s

solution; Synchronization hardware; Semaphores; Classical problems of synchronization;

Deadlocks: System model; Deadlock characterization; Methods for handling deadlocks;

Deadlock prevention; Deadlock avoidance; Deadlock detection and recovery from

deadlock.

08 Hours

Module – 4

OS (BCS303)

Dept. of CSD, ATMECE Page 4

Memory Management: Memory management strategies: Background; Swapping;

Contiguous memory allocation; Paging; Structure of page table; Segmentation.

Virtual Memory Management: Background; Demand paging; Copy-on-write; Page

replacement; Allocation of frames

08 Hours

Module – 5

File System, Implementation of File System: File system: File concept; Access methods;

Directory and Disk structure; File system mounting;

File sharing; Implementing File system: File system structure; File system

implementation; Directory implementation; Allocation methods; Free space management.

Secondary Storage Structure,

Protection: Mass storage structures; Disk structure; Disk attachment; Disk scheduling;

Disk management; Protection: Goals of protection, Principles of protection, Domain

of protection, Access matrix.

08 Hours

Course outcomes: The students should be able to:

 Demonstrate need for OS and different types of OS

 Apply suitable techniques for management of different resources

 Use processor, memory, storage and file system commands

 Realize the different concepts of OS in platform of usage through case studies

Question paper pattern:

The question paper will have TEN questions. There will

be TWO questions from each module.

Each question will have questions covering all the topics under a module.
The students will have to answer FIVE full questions, selecting ONE full question from each module.

Text Books:

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne, Operating System Principles 8th
edition, Wiley-India, 2015

Reference Books

1. Ann McHoes Ida M Fylnn, Understanding Operating System, Cengage

Learning, 6th Edition 2

2. D.M Dhamdhere, Operating Systems: A Concept Based Approach 3rd

Ed, McGraw- Hill, 2013.
3. P.C.P. Bhatt, An Introduction to Operating Systems: Concepts and Practice 4th Edition,

PHI(EEE), 2014. n.

OS (BCS303)

Dept. of CSD, ATMECE Page 5

MODULE 1

INTRODUCTION TO OPERATING SYSTEMS, STRUCTURES

Introduction

Objective

What Operating System Do.

Computer System Organization.

Computer System Architecture.

Operating System Structure.

Operating System Operations.

Process Management.

Memory Management.

Storage Management.

Protection and Security.

Distributed System.

Special-Purpose Systems.

Computing Environments.

Operating System Services.

User-Operating System Interface.

System Calls, Types Of System Calls.

System Programs.

Operating System Design and Implementation.

Operating System Structure.

Virtual Machines and System Boot.

Operating System debugging.

Operating System Generation.

OS (BCS303)

Dept. of CSD, ATMECE Page 6

Introduction

This unit gives the overview of what OS do, computer system organization,

computer system architecture, operating system structure and operating system operations.

The different computing environments are discussed in detail. The introduction to system

calls is given and types of system calls are discussed. The concept of virtual machines in

discussed.

Objective:

 Understand the need of OS

 Understand process, memory and storage management

 Understand the concept of virtual machines, security, and system calls etc.

 Understand different process scheduling algorithms.

 Understand the concept of inter process communication.

OS (BCS303)

Dept. of CSD, ATMECE Page 7

What operating systems do

 A program that acts as an intermediary between a user of a computer and the

computer hardware.

 The purpose of an OS is to provide a environment in which the user can execute the

program in a convenient & efficient manner.

 OS is an important part of almost every computer systems.

Computer system components

Computer system can be divided into four components-

1. Hardware: provides basic computing resources.Ex: CPU, Memory, I/O devices.

2. Operating system: controls and coordinates use of hardware among various

applications and users.

3. Application Programs: defines the ways in which the system resources are used

to solve the computing problems. Ex: word processors, compilers, web-browsers,

database system.

4. Users: Ex: people, machines ,other components

Role of operating System with user and system view points

Operating system can be explored from two view points-

 User view

OS (BCS303)

Dept. of CSD, ATMECE Page 8

 System view

The user’s view of the computer varies according to the interface being used.

Single user: Most users sit in front of a PC, consisting of a monitors, keyboard , mouse and

system unit .Here the goal is to maximize the work.

Mainframe: In other cases user sits at a terminal connected to a mainframe or mini-

computer. Other users are accessing the same through other terminals. Resource sharing is

main goal here.

Handheld computer: Many types of handheld computer are used for easy of use . some are

connected to network through wired or wireless medias embedded computers are used to

run without user intervention.

Embedded computers are used to run without user intervention.

System view

Resource allocator:From the computer point of view operating system is viewed as a

resource allocator . OS acts as a manager of resources like CPU, memory, files etc.

Control program: OS also viewed as a control program it manages the execution of user

of computers.

Operating System Definition:

Operating system is the one program running at all times on the computer (called

as kernel). Everything else is either a system program or an application program.

OS (BCS303)

Dept. of CSD, ATMECE Page 9

Computer System Organization

Computer System Operation

 One or more CPU, device controllers connect through common bus providing

access to shared memory.

 The CPU, and device controllers can execute concurrently computing for memory

cycles.

 For a computer to start running bootstrap program is required. It initializes all

aspects of the system. It locates and loads the operating system kernel to memory.

The OS then starts executing the first process such as "init" and waits for some event

to occur.

 Occurrence of an event is signaled by an interrupt from either hardware or software.

o Hardware triggers an interrupt by sending a signal to the CPU, by way of the

system bus.

o Software triggers an interrupt by executing a special operation called a system

call

Common Function of Interrupts

 Interrupt transfers control to the interrupt service outline through the interrupt

vectors, which contains the addresses of all service routines.

 Address of the interrupted instruction must be saved in interrupt architecture.

OS (BCS303)

Dept. of CSD, ATMECE Page 10

 A trap is a software generated interrupt caused either by an error or a user request.

Interrupt Handling

 The operating system preserves the state of the CPU by storing registers and the

program counter.

 It determines which type of interrupt has occurred i.e. polling and vectored

interrupt system

 Separate code segments are used to determine type of action that has to be taken

for each type of interrupt.

Storage structures

Computer programs must be in main memory or Random-Access Memory or RAM.

It is the only large storage media that the CPU can access directly.

Programs and data must reside in main memory, this is not possible because

 Main memory is too small

 Main memory is volatile storage.

Thus, to hold large quantities of data most computer system provides secondary storage as

an extension of main memory. Most common secondary-storagedevice is a magnetic disk,

which provides storage for both programs and data.

Storage system are organized based on

OS (BCS303)

Dept. of CSD, ATMECE Page 11

 Speed

 Cost

 Volatility

Higher levels are expensive but fast.

Caching:

Information is copied from slower to faster storage temporarily.Cache is checked

first to determine the availability of information. If it is not present information is copied

to cache.

I/O structure

Computer system consists of CPU’s and multiple device controllers that are

connected through a common bus.

Operating systems have a device driver for each device controller which presents a

uniform interface to the device to the rest of the operating system.

Interrupt-Driven I/O

To start an I/O operation, the device driver loads the appropriate registers within

the device controller.

OS (BCS303)

Dept. of CSD, ATMECE Page 12

The device controller examines the contents of these registers, and starts the transfer

of data from the device to its local buffer.

Once the transfer of data is complete, the device controller informs the device driver

via an interrupt. Device driver returns the control to operating system along with status

information.

Direct Memory Access(DMA)

Interrupt-Driven I/O produce high overhead for bulk data movement like disk I/O.

To solve this problem DMA is used.

After setting up buffers, pointers and counters for the I/O device controller transfers

an entire block of data directly to or from its own buffer storage to memory, with no

intervention by the CPU.

Only one interrupt is generated per block to tell the device driver that the operation has

completed at this time CPU is available to perform other work.

OS (BCS303)

Dept. of CSD, ATMECE Page 13

Computer System Architecture

Three different types of Architecture are:-

 Single-processor systems

 Multi-processor systems

 Clustered systems

Single Processor system:

On a single processor system,there is one main cpu capable of executing a

general-purpose instruction set.

Multi processor system (Parallel systems or Tightly coupled systems):

Such systems have two or more processors in close communication sharing the

computer bus and memory.

Multiprocessor systems have three main advantages-

 Increased throughput

 Economy of scale.

 Increased reliability.

Two types of multi-processor systems are-

 Symmetric Multi processors(SMP):In symmetric multi processing, each processors

runs an identical copy of OS and they communicate with one another as needed. All

the CPU shares the common memory. SMP means all processors are peers i.e. no

master slave relationship exists between processors. Each processor concurrently

runs a copy of OS.

 Asymmetric Multiprocessing: Each processor is assigned a specific task. A master

process controls the system. Other processors look to the master for instruction.

This scheme defines master-slave relationship.

The differences between symmetric & asymmetric multi processing may be result of

either H/w or S/w.Special H/w can differentiate the multiple processors or the S/w can be

written to allow only master & multiple slaves.

Advantages of Multi Processor Systems:

OS (BCS303)

Dept. of CSD, ATMECE Page 14

1. Increased Throughput: y increasing the Number of processors we can get more

work done in less time. When multiple process co-operate on task, a certain amount

of overhead is incurred in keeping all parts working correctly.

2. Economy of Scale: Multi processor system can save more money than multiple

single processor, since they share peripherals, mass storage & power supplies. If

many programs operate on same data, they will be stored on one disk & all

processors can share them instead of maintaining data on severalsystems.

3. Increased Reliability:If a program is distributed properly on several processors,

than the failure of one processor will not halt the system but it only slows down.

Operating System Structure

Multiprogramming: It increases CPU utilization by organizing jobs (code and data)so that

the CPU always has one to execute. Fig shows memory layout for a multiprogramming

system.

Fig: Memory layout for a multiprogramming system

 In multiprogramming system a subset of total jobs in system is kept in memory.

 One job is selected and run via job scheduling.

 When it has to wait for I/O, OS switches to another job.

 No user interaction with computer system.

OS (BCS303)

Dept. of CSD, ATMECE Page 15

Time sharing (Multi Tasking)

 It is a logical extension of multiprogramming in which CPU switches jobs so

frequently that users can interact with each job while it is running.(interactive

computing)

 Response time should be less than 1 second.

 Each user has at least one program executing in memory process.

 CPU scheduling is used to select a job from the job pool.

 If processes don’t fit in memory. Swapping moves them in and out to run.

 Virtual memory allows execution of processes not completely in memory.

Operating System Operations

 Modern operating systems are interrupt driven.

 Events are signaled by the occurrence of an interrupt or a trap.(Trap is a software

generated interrupt. ex: divide by zero. It is also called as exception.)

Dual mode

Operation allows OS to protect itself and other system components.

Two different modes are

1. User mode

2. Kernel mode.

Hardware provides mode bit to switch between the modes.

o It provides ability to distinguish when system is running in user mode or kernel

mode.

o Some instructions are designed as privileged & only executable in kernel mode.

o System call changes the mode to kernel mode.

OS (BCS303)

Dept. of CSD, ATMECE Page 16

Timer

 Timer is used to prevent a user program from getting stuck in an infinite loop.

 Timer can be set to interrupt the computer after a specified period.

 We can use the timer to prevent a user program from running too long.

Process Management

 A process is a program in execution. It us the unit of work within the system.

Program is a passive entity. Process is an active entity.

 Process needs resources to accomplish its task Ex: CPU, Memory, I/O.

 Process termination requires reclaim of any reusable resources.

 Single-threaded process has one program counter specifying the location of next

instruction to execute.

 Multi0threaded process has one program counter per thread.

Process Management Activities

The Operating system is responsible for the following activities in connection with

process management.

 Creating and deleting both the user and system processes.

 Suspending and resuming process.

 Providing mechanisms for process synchronization and process communication.

 Providing mechanism for deadlock handling

OS (BCS303)

Dept. of CSD, ATMECE Page 17

Memory Management

 Main memory is central to the operation of a modern computer system.is a

repository of quickly accessible data shared by the CPU and I/O devices.

 Instructions must be in memory for the CPU to execute them.

 For a program to be executed, it must be mapped to absolute addresses and loaded

into memory. As the program executes, it accesses program instructions and data

from memory by generating these absolute addresses. After program termination,

its memory space is declared available, and the next program can be loaded and

executed.

Memory Management Activities

 Keeping track of which parts of memory are currently being used and by whom.

 Deciding which processes and data to move into and out of memory.

 Allocating and de-allocating memory space as needed.

Storage Management

 The operating system provides a uniform, logical view of information storage.

 The operating system abstracts from the physical properties of its storage devices

to define a logical storage unit, called as file.

 The operating system maps files onto physical media and accesses these files via

the storage devices.

File system Management

 Files usually organized into directories.

 Access control mechanisms are used to determine who can access what

File System Management Activities

 Creating and deleting files

 Creating and deleting directories to organize files

 Supporting primitives for manipulating files and directories

 Mapping files onto secondary storage

 Backing up files on stable (nonvolatile) storage media

OS (BCS303)

Dept. of CSD, ATMECE Page 18

Mass Storage Management

 Main memory is too small to accommodate all data and programs, the computer

system must provide secondary storage to back up main memory.

 Usually disks used to store data that does not fit in main memory or data that must

be kept for a long time.

 Entire speed of computer operation hinges on disk subsystems and its algorithms

Mass storage management Activities

 Free space Management

 Storage Allocation

 Disk scheduling

Protection and security

Protection : Any Mechanism for controlling access of process or users to resources

defined by the operating system

Security : Defense of the system against internal and external attacks-like denial-of-

service, viruses, identity theft, theft of service etc.

Protection and security require the system to be able to distinguish among all its users.

 User identifiers include name and associated number one per user.

 User ID then associated with all files, processes of that user to determine access

control.

 Group identifier allows set of users to be defined and also associated with each

process.

 User sometimes needs to escalate privileges to gain extra permissions for an

activity. Operating system provides various methods to allow privilege escalation.

Ex: setuid attribute on UNIX

Distributed Systems

A distributed system is a collection of physically separate, possibly heterogeneous

computer systems that are networked to provide the users with access to the various

resources that the system maintains.

OS (BCS303)

Dept. of CSD, ATMECE Page 19

Access to a shared resource increases computation speed, functionality, data

availability, and reliability.

Special-Purpose Systems

Object of these computer system are to deal with limited computation domains.

Real-Time Embedded Systems

Embedded computers are the most prevalent form of computers in existence.

 Little user interface

 Prefer to spend their time in monitoring and managing hardware devices such as

automobile engines and robotic arms.

 Embedded systems almost always run real-time operating systems.

 A real-time system is used when rigid time requirements have been placed on the

operation of a processor

Multimedia Systems

Multimedia data (audio, video) along with conventional data (text file, word processing

systems) must be handled efficiently to satisfy the user requirements.

Handheld Systems

Handheld systems include personal digital assistants (PDAs), such as Palm and

Pocket-PCs, and cellular telephones etc. Many of which use special-purpose embedded

operating system.

Because of their size most handheld devices will be having small amount of memory, slow

processors and display screen. Programmer must consider these limitations while designing

applications for handheld devices

Computing Environments

Traditional Computing

Common office environment uses traditional computing normal PC is used in traditional

computing.

OS (BCS303)

Dept. of CSD, ATMECE Page 20

Client-server computing

The file-server system provides a file-system interface where clients can create, update,

read, and delete files. An example of such a system is a web server that delivers files to

clients running web browsers.'

Peer-to-Peer Computing

In this model, clients and servers are not distinguished from one another all nodes

within the system are considered peers, and each may act as either a client or a server,

depending on whether it is requesting or providing a service.

Peer-to-peer systems offer an advantage over traditional client-server systems. In

a client-server system, the server is a bottleneck; but in a peer-to-peer system, services can

be provided by several nodes distributed throughout the network.

Web-Based Computing

Web-Based computing has wide range of access devices like PDA’s mobiles, PC’s

and workstations. It focuses on networking. Faster network connectivity is provided to

wired and wireless terminals.

OS (BCS303)

Dept. of CSD, ATMECE Page 21

Operating system services

Operating system services helpful to users are classified as

a) user interface

All operating systems have a user interface. Several forms of UI are

1. Command- line interface

2. Batch interface

3. Graphical User Interface(GUI)

b) Program Execution

System must be able to load the program into memory and to run that

program. System must end the program execution.

c) I/O operations

Operating systems must provide a way to perform Input/output operations.

d) File-System Manipulation

Programs need to read and write files and directories. Some programs

include permission management to allow or deny access to files based on file

ownership.

e) Communications

One process needs to exchange information with other process.

Communications must be implemented via shared memory or message passing.

f) Error Detection

Errors may occur in different units of computer system. For each type of

error OS should take the appropriate action to ensure correct and consistent

computing.

OS functions used to ensure the efficient operations of the system are

a) Resources Allocation

When multiple users or multiple jobs running at the same time, resources

must be allocated to each of them.

b) Accounting

We must keep track of which user use how much and what kind of

resources.

OS (BCS303)

Dept. of CSD, ATMECE Page 22

c) Protection and Security

When several separate processes execute concurrently, it should not be possible

for one process to interfere with the others.

Protection ensures that all access to system resources is controlled.

Security enforce each user to authenticate himself by means of a password to gain

access to system resources.

User Operating System Interface

Two types are

Command Interpreters

Command interpreter is a special program that is running when a job is initiated or

when a user first logs on.

On a system with multiple command interpreters it is referred as shells.

Ex: In UNIX→ Bourne Shell, Korn Shell etc.

Main function of the command interpreters is to execute user-specified command.

Ex: DOS commands.

Graphical User Interface

GUI provides a mouse based window and menu system as an interface.

Ex: In desktop mouse is moved to position its pointer on images or icons on the screen.

Depending on mouse pointer location respective program is invoked.

System calls

System calls provide an interface to the services made available by the operating

system. These calls are generally available as functions written in c and C++

The run-time support system provides a system call interface that serves as the link

to system calls made available by the operating system.

A number is associated with each system call and system call interface involves the

intended system call in the operating system kernel and returns the status of the system call.

Thus, most of the details of the operating system interface are hidden from the programmer.

OS (BCS303)

Dept. of CSD, ATMECE Page 23

Three general methods are used to pass parameters to the operating system.

 Pass the parameters in registers.

 Passing the address of the block or table.

 Parameters are pushed into the stack by program and popped off the stack by the

OS

OS (BCS303)

Dept. of CSD, ATMECE Page 24

Types of System Calls

System calls are grouped into five categories

 Process control

o End, abort

o Load ,execute

o Create process, Terminate process

 File Management

o Create file, delete file

o Open, close

o Read, write.

 Device Management

o Request device, release device

o Get device attributes, set device attributes.

 Information Maintenance

o Get time or date

o Set time or date

o Set process, file or device attributes.

OS (BCS303)

Dept. of CSD, ATMECE Page 25

 Communications

o Create, delete communication connection

o Send, receive messages.

Process Control

 Running programs can be halted by 2 methods

o Normal

o Abnormal.

 Operating system transfer control to the command interpreter in the normal or

abnormal conditions.

 Some operating system allow control cards to indicate special recovery action in

case an error occurs.

 Load and execute system calls are used by process to execute the programs.

 Get process attributes and set process attributes system calls are used to determine

and reset the attributes of a job.

 Debugger is used to help the programmer in finding and correcting errors

 Two different types of process control methods are-

o multitasking and single tasking.

 Ms-Dos operating system is an example of a single tasking system, which has a

command interpreter that is involved when computer is started. ms-dos does not

create a new process while running one process.

OS (BCS303)

Dept. of CSD, ATMECE Page 26

 Ms-Dos loads the program into memory writing over most of itself to give the

program as much memory as possible.

 Ms-Dos does not have multitasking capabilities. Free BSD is an example of

multitasking system.

 In free BSD, the command interpreter may continue running while another

program is executed. Fork system call is used to create new process.

File Management

Files are created and deleted with the help of system calls. It require name of the

file with file attributes for creating and deleting files.

OS (BCS303)

Dept. of CSD, ATMECE Page 27

Other operations performed on file is read,write and update. Close system call is

used to close a file

Device Management

System calls are also used for accessing a device. When more than one user is

accessing a device, request is made before use of the device. After using the device user

must release the device. Release system call is used to free the device.

Ms-Dos and UNIX merge the I/O devices and files to form file-device structure.

In this structure I/O devices are identified by special file names.

System Programs

System programs can be divided into following categories.

 File Management

These programs create, delete, copy, list and manipulate files and directories.

 Status Information

These programs gives details about date, time, amount of available memory etc

 File Modification

Text editors are used to create and modify the contents of files stored on disk or

other storage devices.

 Programming Language Support

Compilers, Assemblers, Debuggers for common programming languages are

provided to the user with the Operating System

 Program Loading and Execution

Once a program is assembled or compiled it must be loaded into memory to be

executed. the system may provide loaders, linkage editors etc.

 Communications

These programs allows users to send messages, to browse web pages etc. in addition

to system programs, most OS are supplied with application programs to solve

common problem.

o ex: word processors

o games

o data base systems.

OS (BCS303)

Dept. of CSD, ATMECE Page 28

OS Design and Implementation

Design Goals

At the highest level, the design of the system will be affected by the choice of

hardware and type of the system like batch, time-shared etc.

Requirements can be divided into two basic groups:-

 user goals

 system goals

According to user the system must be-

 Convenient to use

 Easy to learn and use

 Reliable, safe and fast.

According to system designer the system must be-

 Easy to design , implement and maintain.

 It should be flexible , reliable & error free.

Mechanisms and Policies

 Policy and mechanism are separated from one another.

 Mechanism determine how to do something.

 Policies determine what will be done.

 Separation of policy and mechanism is important for flexibility.

Implementation

 Operating systems are written in higher level language like C or C++.

 The advantage of using higher level language is code can be written faster, is easy

to understand and debug.

 The only possible disadvantage of implementing a OS in higher level language are

reduced speed and increased storage requirement.

OS (BCS303)

Dept. of CSD, ATMECE Page 29

Operating system structure

Simple Structure

MS-DOS is all example for simple structure. It was designed to provide the most

functionality in least space, so it was not divided into modules carefully.

In Ms-Dos interface and level of functionality are not well separated. Application programs

are able to access the basic I/O routines to the display and disk driver. Due to this entire

system may crash if it encounters the malicious program.

Another example of limited structuring is the original UNIX operating system.

It consist of two separable parts-

 The kernel

 The system programs

The kernel is separated into a series of interfaces and device drivers which have

been added and expanded over the years as UNIX has evolved. This monolithic structure

was difficult to implement and maintain.

OS (BCS303)

Dept. of CSD, ATMECE Page 30

Layered approach

 In this operating system is broken into many layers.(levels)

 The bottom layer is the hardware (layer 0) and the highest (layer N) is the user

interface.

OS (BCS303)

Dept. of CSD, ATMECE Page 31

 Layer is an implementation of an abstract object. (Consist data and Operations to

manipulate the data)

 The main advantage of layered approach is simplicity of construction and

debugging

 Higher-level layers uses functions and services of only lower-level layers

 The major difficulty with layered approach is defining the various layers.

Micro kernels

 ‘Mach’ operating system modularized the kernel using the Microkernel approach.

 This method structure the operating system by removing all non-essential

components from the kernel and implementing them as system and user-level

programs. This results in a smaller kernel

 The main function of the microkernel is to provide a communication facility

between the client program and the various services that are also running in user

space.

 Benefit of microkernel approach is easy of extending the operating system.All new

services are added to user space and do not require modification of the kernel.

 Microkernel can suffer from performance decreases due to increased system

function overhead.

OS (BCS303)

Dept. of CSD, ATMECE Page 32

Modules

 In this object oriented programming technique is used to create a modular kernel.

 Here, kernel has a set of core components and dynamically links additional

services either during boot time or during run time.

Ex: Solaris, Linux, Mac OS

 Solaris operating system structure is organized around a core kernel with seven

types of loadable kernel modules

 Such a design allow the kernel to provide core services yet also allows certain

features to be implemented dynamically.

 It is more efficient than micro kernel approach

Virtual machines

 Concept behind a virtual machine is to abstract the hardware of a single computer

into several different execution environments, thereby creating the illusion that

each separate execution environment is running its own private computer

 Virtual machine approach provides are interface that is identical to the underlying

hardware.

OS (BCS303)

Dept. of CSD, ATMECE Page 33

 With the help of virtual machines it is possible to share the same hardware among

different operating system.

 Major difficulties with virtual m/c s are allocating disk system.

 Virtual machine concept has several advantages.

o Each VM is completely isolated from all other VM’s. So no protection

problem

o There is no direct sharing of resource.

o Virtual machine system is a perfect vehicle for operating system research

and development

Example: VMware

 VMware abstracts Intel 8086 hardware into isolated virtual machines

 VMware runs as an application on host operating system such as windows or Linux

and allows this host system to concurrently run several different quest operating

system as independent virtual machines.

 In the architecture diagram Linux is running as the host Operating system.

 Free BSD, Windows NT and Windows XP are running as quest operating systems.

OS (BCS303)

Dept. of CSD, ATMECE Page 34

The Java Virtual Machine

Java is a popular object oriented programming language. For each Java class, the

compiler produced an architecture neutral byte code output (.class) file that will run on any

implementation of the JVM.

JVM is a specification for an abstract computer. It consist of a class loader and a

Java interpreter that executes the architecture neutral byte codes.

OS (BCS303)

Dept. of CSD, ATMECE Page 35

Operating System Generation

 Operating system are designed to run on class of machines at a variety of sites

with a variety of peripheral configurations.

 The system must be configured or generated for each specific computer sites.

 This process is referred as system generation. (SYSGEN)

 This process requires the information like

o Type of CPU used

o Memory space available in the system

o Available device list

o Required operating system option

System Booting

The procedure of starting a computer by loading the kernel is known as booting the

system. Bootstrap program or Bootstrap loader locates the kernel loads it into main memory

and start its execution.

Bootstrap program is in the form of read only memory (ROM) because the RAM is

in unknown state at a system Start up.

All forms of ROM are knows as FIRMWARE. For large OS like Windows, Mac

OS, the Bootstrap loaders is stored in firmware and the OS is on disk. Bootstrap has a bit

OS (BCS303)

Dept. of CSD, ATMECE Page 36

code to read a single block at a fixed location from disk into the memory and execute the

code from that boot block.

Assignment Questions

1. Explain fundamental difference between i) N/w OS and distributed OS ii) web

based and embedded computing. . (8) Dec 07/Jan 08

2. What do you mean by cooperating process? Describe its four advantages. (6) Dec

07/Jan 08

3. What are different categories of system programs? Explain. (6) Dec 07/Jan 08

4. Define OS. Discuss its role from different perspectives. (7) Dec 08/Jan 09.

5. List different services of OS. Explain. (6))Dec 08/Jan 09.

6. Explain the concept of virtual machines. Bring out its advantages. (5) Dec 08/Jan 09.

7. Difference between a trap and an interrupt (2) Dec 08/Jan 09.

8. Define an operating system. Discuss its role with user and system view points.

(06marks) Dec.09/Jan.10

9. Give features of symmetric and asymmetric multiprocessing systems (4) Dec.09/

Jan.10

10. Briefly explain common classes of services provided by various OS for helping usefor

ensuring efficient operation of system. (10) Dec.09/ Jan.10

11. Define OS. Explain its two view points (5) Dec 2010

OS (BCS303)

Dept. of CSD, ATMECE Page 37

12. What are OS operations? Explain (6) Dec.09/ Jan.10

13. Define Virtual machine. With diagram, explain its working. What are its benefits?

(9)Dec.09/Jan.10

14. Distinguish among following terminologies : Multiprogramming systems,

multitasking systems, multiprocessor systems. (12) Dec.09/ Jan.10

15. What do you mean by PCB? Where is it used? What are its contents? Explain. (8) Dec

07/Jan 08

16. Explain direct and indirect communications of message passing systems. (6))

Dec07/Jan 08

17. Explain the difference between long term and short term and medium term

schedulers(6) Dec 07/Jan 08

18. What is process? Draw and explain process state diagram. (5) Dec 08/ Jan 09

19. Discuss operations of process creation and termination in UNIX. (7) Dec 08/ Jan 09

20. Explain different states of a process (6) Dec 09/ Jan 10

Outcome

 Familiarize with OS and it functionality

 Know the application of virtual machines

 Implement different process, memory and storage management techniques.

 Implement different process scheduling algorithms.

 Familiarized with inter process communication

OS (BCS303)

)

Dept. of CSD, ATMECE Page 38

Further Reading

1. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System Principles, 8th

edition, Wiley India, 2009. (Listed topics only from Chapters 1 to 12, 17, 21)

2. D.M Dhamdhere: Operating systems - A concept based Approach, 2nd Edition, Tata

McGraw- Hill, 2002.

3. P.C.P. Bhatt: Introduction to Operating Systems: Concepts and Practice, 2nd

Edition, PHI, 2008.

4. Harvey M Deital: Operating systems, 3rd Edition, Pearson Education, 1990.

5. http://nptel.ac.in/courses/106106144

6. https://en.wikipedia.org/wiki/Operating_system

7. https://www.tutorialspoint.com/operating_system

8. http://www.studytonight.com/operating-system

9. https://www.linux.com

10. https://opensource.com

http://nptel.ac.in/courses/106106144
https://en.wikipedia.org/wiki/Operating_system
https://www.tutorialspoint.com/operating_system
http://www.studytonight.com/operating-system
https://www.linux.com/
https://opensource.com/

OS (BCS303)

Dept. of CSD, ATMECE Page 39

MODULE 2

PROCESS MANAGEMENT
 Process concept

 Process scheduling

 Operations on processes

 Inter process communication

Multi-Threaded Programming.

Overview;

Multithreading Models.

Thread Libraries;

Threading Issues.

Process Scheduling: Basic Concepts.

Scheduling Criteria.

Scheduling Algorithms.

Thread Scheduling.

Multiple-Processor Scheduling.

Assignment Questions

Outcome

Further Reading

OS (BCS303)

Dept. of CSD, ATMECE Page 40

 Introduction

This unit gives the overview of process concept and operation on process. Different

process scheduling is discussed in detail. The concepts of inter process communication and

multi threaded programming are highlighted. The different scheduling algorithms with

problems are explained. The concept of thread scheduling and multi processor scheduling

are introduced.

Objective:

 Understand the concept of multi-threaded programming.

 Understand critical section problem

 Understand Peterson’s solution

 Understand semaphores and synchronization

The Process Concept

The Process

 Process is program in execution.

 Process is also referred as text section which contains program counter value and

processor register contents.

 Stack contains temporary data and global variables.

 Process contains heap memory which can be dynamically allocated during process

run time.

 Program is a passive entity and process is a active entity.

OS (BCS303)

Dept. of CSD, ATMECE Page 41

Process states

Current activity of the process defines state of a process. Each process may be in one of

the following states

New : The process being created

Running : Instruction are being executed

Waiting : The process is waiting for some event to occur

Ready : The process is waiting to be assigned to a processor

OS (BCS303)

Dept. of CSD, ATMECE Page 42

Terminated : The process has finished execution

The program stored in the boot block loads the entire OS into memory and begins its

execution. A disk that has a boot partition is called a boot disk or system disk.

Process Control Block (Task Control Block)

Each process is represented in the operating system by a process control block (PCB)

It contains information related to process.

 Process state: The state may be new, ready, running, waiting, halted etc.

 Program counter: The counter indicates the address of the next instructionto be

executed.

 CPU registers: It include accumulators, index registers, stack pointers, and

general-purpose registers. Along with the program counter, this state information

must be saved when an interrupt occurs, to allow the process to be continued

correctly afterward

OS (BCS303)

Dept. of CSD, ATMECE Page 43

 CPU-scheduling information: It includes a process priority, pointers to

scheduling queues etc.

 Memory-management information: It includes value of the base and limit

registers, the page tables, or the segment tables etc.

 Accounting information: It includes details about amount of CPU used, time

limits, account numbers, process number etc.

 I/O status information: It includes the list of I/O devices allocated to the process,

a list of open files etc

Threads

In modern OS Process can have multiple threads of execution to perform more

than one task at a time.

Process Scheduling

Process Scheduled selects an available process for execution on the CPU.

Scheduling Queues

 Queuing Diagram is used to represent process scheduling concept.

 As processes enter the system, they are put into a job queue.

OS (BCS303)

Dept. of CSD, ATMECE Page 44

 The processes residing in main memory and waiting to execute are kept in a ready

queue.

 A process waiting for a particular I/O device resides in device queue.

 In a Queuing diagram rectangular box represents Queue and circles represents the

resources.

 A new process is initially put in the ready queue. Once the process is allocated the

CPU will starts executing, several events associated with it are :

o Process may request I/O and placed in I/O queue

o Process may create new sub process and wait for sub process termination

o Process may be removed forcibly from CPU, as a result of an interrupt and

put back in the ready queue.

Schedulers

 A process migrates among the various scheduling queues throughout its lifetime.

 Operating system must select, the processes from these queues with the help of

scheduler

 Long-term scheduler selects the processes from mass-storage device and loads

them into memory for execution.

 Short-term scheduler or CPU scheduler selects among the processes which are

ready to execute and allocates the CPU to one of them.

 Short-time scheduler must be fast

 Because of Longer interval between executions, the long-term scheduler can take

more time to decide which process should be selected for execution

 Long-term scheduler controls the degree of multiprogramming.

 Long-term scheduler must select a good mix of I/O bound and CPU bound process.

 Some Operating system uses medium term scheduler. It removes the process from

memory and reduces the degree of multiprogramming. Later, process can be

reintroduced into memory and execution can be continued where it left off.

Context Switch

 When an interrupt occurs, the system needs to save the current context of the

process currently running on the CPU so that it can restore that context when its

processing is done.

OS (BCS303)

Dept. of CSD, ATMECE Page 45

 Switching the CPU to another process requires performing a state save of the current

process and a state restore of a different process. This task is known as a context

switch.

 Context-switch time is pure overhead, because the system does no useful work

while switching.

Operations on Processes

Process Creation

 A process can create several new processes, with the help of create-process

system call.

 The creating process is called a parent process, and the new processes are called

the children of that process.

 Each of these new processes may in turn create new processes forming a tree of

processes.

 Unique process identifier(or pid) is used to identify the process.

 A process will need certain resources to accomplish its task. When a process creates

a sub process that sub process may be able to obtain its resources directly from the

OS or parent may have to partition its resources among its children.

 When a process creates a new process, two possibilities exist in terms of execution:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

 Fork () A new process is created by fork system call

 Exec() It is used after a fork() system call one of the two processes to replace the

process’s memory space with a new program.

OS (BCS303)

Dept. of CSD, ATMECE Page 46

 Wait() Parent can issue a wait() system call to move itself off the ready queue

until the termination of the child.

 Exit () Process completes using the exit() system call

 When the child process completes the parent process resumes from the call to

wait()

Process Termination

 A process terminates when it finishes executing its final statement and asks the

operating system to delete it by using the exit () system call.

 Process returns a status value to its parent process.

 All the resources of the process including physical and virtual memory, open files,

and I/O buffers are de-allocated by the operating system.

 Parent process can terminate the child process with the help of system call.

 Users can use will command to terminate other users job.

 A parent may terminate the execution of one of its children for a variety of

reasons like-

o The child has exceeded its usage of some of the resources that it has been

allocated.

o The task assigned to the child is no longer required.

o The parent is exiting, and the operating system does not allow a child to

continue if its parent terminates.

Inter process Communication

Two types of process are-

1. Independent process

2. Co-operating process

Independent process:

A process is independent if it cannot affect or be affected by the other processes

executing in the system. Any process that does not share data with any other process is

independent.

Co-Operating Process:

OS (BCS303)

Dept. of CSD, ATMECE Page 47

A process is cooperating if it can affect or be affected by the other processes

executing in the system. Clearly, any process that shares data with other processes is a

cooperating process.

Process Co-Operation is essential because of following reasons-

 Information sharing: Since several users may be interested in the same piece of

information OS must support information sharing process.

 Computation speedup: Multiple processing elements can execute in parallel. It

allows faster execution.

 Modularity: Dividing the system functions into separate processes or threads,

results in modular structure. Different modules must be able to communicate with

each other.

 Convenience: Even an individual user may work on many tasks at thesame time.

Co-Operating process require an inter process communication mechanism that allow

then to exchange data and information.

Two fundamental models of inter process communication are-

 Shared memory

 Message passing

Shared-Memory Model

OS (BCS303)

Dept. of CSD, ATMECE Page 48

In this a region of memory that is shared by Co-Operating process is established.

Process can then exchange information by reading and writing data to the shared region.

Message-Passing Model

In this communication takes place by means of messages exchanged between the

co-operating processes.

 Message passing is useful for exchanging smaller amounts of data

 Shared memory allows maximum speed

 Message passing system uses system call so kernel assistance is required. Shared

memory system does not require it.

Shared-Memory Systems

 Interprocess communication using shared memory requires communicating

processes to establish a region of shared memory.

 Shared-memory region resides in the address space of the process creating the

shared-memory segment. Other processes that wish to communicate using this

shared-memory segment must attach it to their address space.

 Let us consider the producer-consumer problem. A producer process produces

information that is consumed by a consumer process.

 To allow producer and consumer process to run concurrently we must have a buffer

of items that can be filled by the producer and emptied by the consumer. This buffer

will reside in a region of memory that is shared by the producer and consumer

processes.

 A producer can produce one item while the consumer is consuming another item.

 The producer and consumer must be synchronized so that the consumer does not

try to consume an item that has not yet been produced.

Message-Passing Systems

 Co-operating processes can communicate with each other via a message-passing

system.

 It is useful in distributed environment Ex: Chat Program used in a world-wide lab

 A message-passing facility provides two operations-

a) Send (message)

b) Receive (message)

OS (BCS303)

Dept. of CSD, ATMECE Page 49

 A communication link must exist between a sending process and receiving

process.

 Several methods used to implement a logical link are-

o Direct or indirect communication

o Synchronous or Asynchronous communication

o Automatic or Explicit Buffering

Naming

 Processes that want to communicate can use-

 Direct Communication

 Indirect Communication

 In direct communication, each process that wants to communicate must explicitly

name the recipient or sender of the communication

 In this scheme send() and receive() primitives are defined as-

o Send (P, message)—Send a message to process P.

o Receive (Q, message)—Receive a message from process Q.

 With indirect communication, the messages are sent to and received from

mailboxes or ports

o Send(A, message)—Send a message to mailbox A.

o Receive(A, message)—Receive a message from mailbox A.

 Communication link in direct scheme has the following properties –

o A link is established automatically between every pair of processes that

want to communicate.

o A link is associated with exactly two processes

 In indirect communication scheme, a communication link has following

properties-

o A link is established between a pair of processes only if both members of

the pair have a shared mail box.

o A link may be associated with more than two processes.

Synchronization

Message passing may be blocking an non-blocking, also known as synchronous

and asynchronous.

OS (BCS303)

Dept. of CSD, ATMECE Page 50

 Blocking send: The sending process is blocked until the message is received by

the receiving process or by the mailbox.

 Non-blocking: The sending process sends the message and resumes operation.

 Blocking receive: The receiver blocks until a message is available

 Non-Blocking Receive: The receiver retrieves either a valid message or a null

Buffering

Messages exchanged by communicating processes reside in a temporary queue. Such

queues can be implemented by three ways-

 Zero capacity: In this queue has maximum length of zero. Sender must block until

the recipient receives the message.

 Banded capacity: The queue has finite length n. so at most n messages can reside

in it. If the queue is not full the message is placed in the queue.

 Unbounded capacity: the queue length is potentially infinite, any number of

message can wait in it. The sender never blocks

Multithreaded Programming

Overview

A thread is a basic unit of CPU utilization; it comprises a thread ID, a programcounter, a

register set, and a stack.

 A traditional (or heavyweight) process has a single thread of control.

OS (BCS303)

Dept. of CSD, ATMECE Page 51

 In web-server case it is more efficient to use one process that contains multiple threads. So,

that the amount of time that a client have to wait for its request to be serviced will be less.

 Threads also play a important role in remote procedure call.

 If a process has multiple threads of control, itcan perform more than one task at a time.

The benefits of multithreaded programming can be classified into--

 Responsiveness: Multithreading allow a program to continue running even if part of it is

blocked or is performing a lengthy operation. Ex: multithreaded web browser could still

allow user interaction

 in one thread while an image was being loaded in another thread.

 Resource sharing:Threads share the memory and the resources of the process to which they

belong.

 Economy: Allocating memory and resources for process creation is costly. Because threads

share resources of the process to which they belong, it is more economical to create and

context-switch threads.

 Utilization of multiprocessor architectures: A single threaded process can only run on one

CPU irrespective of available CPU’s Multithreading on a multi-CPU machine increases

concurrency.

Multithreading Models

Support for threads may be provided either at the user level, for user threads, or

by the kernel, for kernel threads.

Three ways of establishing connection between user threads and kernel threads are

Many-to-one Model:

OS (BCS303)

Dept. of CSD, ATMECE Page 52

 It maps many user-level threads to one kernel thread.

 Thread management is done by the thread library in user space, so it is efficient

 Because only one thread can access the kernel at a time, multiple threads are unable

to run in parallel on multiprocessors.

One-to-One Model:

 The One-to-One model maps each user thread to a kernel thread.

 It allows multiple threads to run in parallel on multiprocessors.

 Drawback of this is model is that creating a user thread requires creating the

corresponding kernel thread. Which effects the performance of an application.

Many-to-Many Model:

OS (BCS303)

Dept. of CSD, ATMECE Page 53

 The Many-to-Many model multiplexes many user-level threads to smaller or equal number

of kernel threads

 The number of kernel threads may be specific to either a particular application or a particular

machine.

Thread Libraries

 A thread library provides the programmer an API for creating and managing threads.

 There are two primary ways of implementing a thread library.

o The first approach is to provide a library entirely in user space with no kernel

support. All code and data structures for the library exist in user space.

o The second approach is to implement a kernel-level library supported

directly by the operating system.

 Three main thread libraries are in use today:

(1) POSIX threads

(2) Win32

(3) Java threads,

 POSIX standard threads or Pthreads may be provided as user or kernel level library

 Win 32 thread library is a kernel-level library available on windows systems

OS (BCS303)

Dept. of CSD, ATMECE Page 54

 Java thread API allows threads creation and management directly in java

programs.

Threading Issues

The fork() and exec() System Calls

Fork() system call is used to create a process. If a thread invokes the exec() system call,

the program specified in the parameter to exec() will replace the entire process including

all threads.

Cancellation

Thread cancellation is the task of terminating a thread before it has completed.

A thread that is to be cancelled is referred as target thread. It may occur in two cases

1. Asynchronous cancellation: One thread immediately terminates the target thread.

2. Deferred cancellation: The target thread periodically checks whether it should

terminate, allowing it an opportunity to terminate itself in an orderly fashion.

Signal Handling

 A signal is used in UNIX systems to notify a process that a particular event has

occurred.

 A signal may be received either synchronously or asynchronously.

 All signals follow the same pattern –

o A signal is generated by the occurrence of a particular event.

o A generated signal is delivered to a process.

o Once delivered, the signal must be handled.

 Every signal may be handled by one of two possible handlers:

1. A default signal handler

2. A user-defined signal handler

 Signals may be handled in different ways some signals may simply be ignored,

others may be handled by terminating the program.

Thread pools

 Idea behind a thread pool is to create a number of threads at process startup and

place them into a pool, where they sit and wait for work.

OS (BCS303)

Dept. of CSD, ATMECE Page 55

 When a server receives a request, it awakens a thread from this pool- if oneis

available

 Server passes the request to this thread

 Once the thread completes its service, it returns to the pool and awaits more work.

 If the pool contains no available thread, the server waits until one becomes free.

 Advantages of thread pools are-

o Servicing a request with an existing thread is usually faster than waiting to

create a thread.

o A thread pool limits the number of threads that exist at any one point.

Thread Specific Data

Each thread might its own copy of certain data such data is called thread Specific data

Scheduler Activations

One scheme for communication between the user-thread library and the kernel is known

as scheduler activation.

Process Scheduling

CPU scheduling is the basis of multiprogrammed operating systems. By switching

the CPU among processes, the operating system can make the computer more productive.

In multiprogramming systems several processes are kept in memory at one time.

When one process has to wait, the OS takes the CPU away from that process and gives the

CPU to another process.

CPU-I/O Burst Cycle

Process execution consists of a cycle of CPU execution and I/O wait.

Processes alternate between these two states.

Process execution begins with a CPU burst. That is followed by an I/O burst,

which is followed by another CPU burst, then another I/O burst, and so on. Final CPU burst

ends with a system request to terminate execution

OS (BCS303)

Dept. of CSD, ATMECE Page 56

CPU Scheduler

CPU scheduler or short-term-scheduler selects a process from the processes available in

memory that are ready to execute and allocates the CPU to that process.

Preemptive Scheduling and Non-Preemptive Scheduling

CPU-scheduling decisions may take place under the following cases

1. When a process switches from the running state to the waiting state

2. When a process switches from the running state to the ready state

3. When a process switches from the waiting state to the ready state

4. When a process terminates

When scheduling takes place under 1st and 4th case it is called as non preemptive or Co-

operative scheduling otherwise it is preemptive.

OS (BCS303)

Dept. of CSD, ATMECE Page 57

Under non-preemptive scheduling, once the CPU has beenallocated to a process, the

process keeps the CPU until it releases the CPU eitherby terminating or by switching to the

waiting state.

Dispatcher

Dispatcher gives control of the CPU to the process selected by the short-term scheduler.

This function involves the following:

• Switching context

• Switching to user mode

• Jumping to the proper location in the user program to restart that program

Time required for the dispatcher to stop one process and start another running is

known as the dispatch latency.

Scheduling Criteria

Many criteria have been suggested for comparing CPU scheduling algorithms, they are

 CPU utilization: We want to keep the CPU as busy as possible. It can range from

0 to 100 percent.

 Throughput: Number of processes that are completed per time unit.

 Turnaround time: The interval from the time of submission of a process to the

time of completion is the turnaround time. Turnaround time is the sum of the periods

spent waiting to get into memory, waiting in the ready queue, executing on the CPU,

and doing I/O.

 Waiting time: It is the sum of the periods spent waiting in the ready queue.

 Response time: It is the amount of time from the submission of a request until the

first response is produced.

Scheduling Algorithms

CPU scheduling deals with the problem of deciding which of the processesin the ready

queue is to be allocated the CPU.

First-Come, First-Served Scheduling

 It is the simplest CPU-scheduling algorithm.

OS (BCS303)

Dept. of CSD, ATMECE Page 58

 With this method, the process that requests the CPU first is allocated the CPU

first.

 Average waiting time under the FCS policy is quite long.

Consider the following set of processes that arrive at time 0, with the length of the

CPU burst given in milliseconds

Process Burst Time

P1 24

P2 3

P3 3

Process arrive in order P1, P2, P3

Gantt Chart

Waiting time for P1 = 0 ms

Waiting time for P2 = 24 ms

Waiting time for P3 = 27 ms

Average waiting time = 0 + 24 + 27ms

3

= 51ms
3

= 17 ms

Turnaround time =Burst time + waiting time

Turnaround time for P1 = 24 + 0 ms

Turnaround time for P2 = 3 + 24 ms

Turnaround time for P3 = 3 + 27 ms

Average turnaround time = 24+27+30 ms

3

= 81ms
3

=27ms

Shortest-Job-First Scheduling

(shortest-job-first (SJF) schedulingalgorithm.)

OS (BCS303)

Dept. of CSD, ATMECE Page 59

This algorithm associates with each process the length of theprocess's next CPU

burst. When the CPU is available, it is assigned to the processthat has the smallest next

CPU burst.

Here scheduling depends on the length of the next CPU burst of a process, rather

than its total length.

Process Burst Time

P1 6

P2 8

P3 7

P4 3

Waiting time for Process P1 = 3 ms

Waiting time for Process P2 = 16 ms

Waiting time for Process P3 = 9 ms

Waiting time for Process P4 = 0 ms

Average waiting time = 03+16+9+0ms

4

= 28ms
4

= 7 ms

Difficulty in SJF is knowing the length of the next CPU request SJF algorithm can be

either preemptive or non-preemptive.

Preemptive SJF (Shortest-remaining time-first-scheduling): Whenever a new process

arrives in the system the next CPU burst of the newly arrived process may be shorter than

what is left of the currently executing process. A preemptive SJF will preempt the currently

executing process.

Non Preemptive SJF: Non Preemptive SJF will allow the currently running process to

finish its CPU burst.

OS (BCS303)

Dept. of CSD, ATMECE Page 60

Preemptive SJF problem

Process Arrival Time SJF Problem

P1 0 8

P2 1 4

P3 2 9

P4 3 5

If the process arrive at the times shown then preemptive SJF is given like

Waiting time for P1 = (10 – 1)ms

=(1 - 1) ms

(P2 is arrived at 1ms →check arrival time CPU is allocated immediately)

P3 =(17 – 2) ms

P4 =(5 – 3)ms

Average waiting time = 9+0+15+2 = 6.5 ms
4

Non Preemptive

P2 P4 P1 P3

0 4 9 17 26

Waiting time for P1 = 9 ms

Waiting time for P2 = 0 ms

Waiting time for P3 = 17 ms

Waiting time for P4 = 4 ms

Average waiting time = 9+0+14+4 ms

4

=
30

4

=7.5 ms

OS (BCS303)

Dept. of CSD, ATMECE Page 61

Priority Scheduling

In this a priority is associated with each process, and the CPU is allocated to the

process with the highest priority.

Priority is indicated by fixed range of numbers

Assume low numbers represent high priority

Process Arrival Time SJF Problem

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P4 5 2

Waiting time for P1 = 6 ms

Waiting time for P2 = 0 ms

Waiting time for P3 = 16 ms

Waiting time for P4 = 18ms

Waiting time for P5 = 1ms

Average waiting time = 6+0+16+18+1 ms
5

=
41

4

= 8.2ms

Major problem with priority scheduling is indefinite blocking or starvation .

A priority scheduling algorithm can leave some low priority processes waiting

indefinitely.

A solution to the problem o indefinite blockage of low-priority process is aging.

Aging is the technique of gradually increasing the priority of processes that wait in the

system for a long time.

OS (BCS303)

Dept. of CSD, ATMECE Page 62

Round-Robin Scheduling

Round-Robin Scheduling is designed for time-sharing systems. A small unit of

time, called a time quantum or time slice is defined.

CPU scheduler goes around the ready queue, allocating the CPU to each process

for a time interval of up to 1 time quantum.

In RR scheduling if a process’s CPU burst exceeds 1 time quantum that process is

preempted and put back in the ready queue.

Therefore, RR scheduling is preemptive

Consider the process

P1 24

P2 3

P3 3

Time quantum is 4ms

Waiting time for P1 → 10 – 4 = 6 ms

Waiting time for P2 → = 4 ms

Waiting time for P3 → = 7 ms

Average waiting time = 6+4+7ms

3

=17 ◻◻
3

=5.66 ms

Multilevel Queue Scheduling

 This is used for the processes which can be classified into different groups

 A multilevel Queue scheduling algorithm partitions the ready queue into several

separate queues. The processes are permanently assigned to one queue based on

some priority.

 Each queue has its own scheduling algorithm

OS (BCS303)

Dept. of CSD, ATMECE Page 63

Ex: separate queues might be used for foreground and background processes. The

foreground queue might be scheduled by an RR algorithm, while the background

queue is scheduled by an FCFS algorithm.

 There must be scheduling among the queues.

 Ex: Five queues are listed below in the order of priority.

o System processes

o Interactive processes

o Interactive editing processes

o Batch processes

o Student processes

 Each queue has absolute priority over lower-priority queues.

 No process in the batch queue, for example could run unless the queues for system

processes, interactive processes and interactive editing processes were all empty.

 If an interactive editing process entered the ready queue while a batch process was

running , the batch process would be preempted.

Multilevel Feedback-Queue Scheduling

 This allows a process to move between queues

 If a process uses too much CPU time it will be moved to a lower-priority queue.

 This scheme leaves I/O bound and interactive process in the higher-priority

queues.

OS (BCS303)

Dept. of CSD, ATMECE Page 64

 In this scheme process that waits too long in a lower-priority queue may be moved

to a higher-priority queue.

 Example: consider a multilevel feedback-queue scheduler with three queues

numbered from 0 to 2

 The scheduler first executes all processes in queue 0. Only when queue 0 is empty

it will execute process in queue 1.

 Similarly process in queue 2 will be executed if queues 0 and 1 are empty

 A process that arrives for queue 1 will preempt a process in queue 2

 A process entering the ready queue is put in queue 0. A process in queue 0 is given

a time quantum of 8 milliseconds. If it does not finish within this time, it is moved

to the tail of the queue 1.

 If queue 0 is empty, the process at the head of queue 1 is given a quantum of 16

milliseconds. If it does not complete, it is preempted and is put into queue 2.

Processes in queue 2 are run on an FCFS basis but are run only when queues 0 and

1 are empty.

Multiple-Processor Scheduling

If multiple CPU’s are available load sharing becomes possible. We concentrate on

Homogeneous systems. i.e.., processors are

identical. Approaches to Multiple-Processor

Scheduling Asymmetric multiprocessing

OS (BCS303)

Dept. of CSD, ATMECE Page 65

 All scheduling decisions are handled by a single processor the master sever. Other

processors execute only user code.

 Here only one processor accesses the system data structures.

Symmetric multiprocessing

 Here each processor is self-scheduling

 Scheduler for each processor examine the ready queue and select a process to

execute.

Processor Affinity

Because of the high cost, most SMP systems try to avoid migration of processes

from one processor to another and instead attempt to keep a process running on the same

processor.

Processor affinity, meaning that a process has an affinity for the processor on

which it is currently running.

Load Balancing

Load Balancing attempts to keep the workload evenly distributed across all

processors in an SMP system.

Two general approaches are

 Push migration: A specific task checks the load on each processor. In the case of

imbalance it evenly distributes the load

 Pull migration: It occurs when an idle processor pulls a waiting task from a busy

processor

Symmetric Multithreading

 It providing multiple physical processors to allow several threads to run

concurrently (symmetric multiprocessing provides multiple physical processors)

 It is also called as hyper threading technology

 SMT is a feature provided in hardware not in s/w

OS (BCS303)

Dept. of CSD, ATMECE Page 66

 Each logical processor has its own architecture state, which includes general

purpose and machine-state registers.

 Each logical processor is responsible for its own interrupt handling

Thread Scheduling

Contention Scope

One distinction between user-level and kernel-level threads lies in how they are

scheduled. On systems implementing the many-to-one and many-to-many models, the

thread library schedules user-level threads to run on an available LWP, a scheme known as

process-contention scope (PCS), since competition for the CPU takes place among threads

belonging to the same process.

Os must schedule the kernel thread onto a physical CPU. To decide which kernel

thread to schedule onto a CPU, the kernel uses system-contention scope (SCS).

Competition for the CPU with SCS scheduling takes place among all threads in the

system. Systems using the one-to-one model (such as Windows XP, Solaris 9, and Linux)

schedule threads using only SCS.

Multiple-Processor Scheduling

 CPU scheduling more complex when multiple CPUs are available.

 Homogeneous processors within a multiprocessor.

 Load sharing

OS (BCS303)

Dept. of CSD, ATMECE Page 67

 Asymmetric multiprocessing – only one processor accesses the systemdata

structures, alleviating the need for data sharing.

 Hard real-time systems – required to complete a critical task within a guaranteed

amount of time.

 Soft real-time computing – requires that critical processes receive priority over

less fortunate ones.

Algorithm Evaluation

 Deterministic modeling – takes a particular predetermined workload and defines

theperformance of each algorithm for that workload.

 Queuing models

 Implementation

Evaluation of CPU Schedulers by Simulation

OS (BCS303)

Dept. of CSD, ATMECE Page 68

Assignment Questions
1. Differentiate between ling term and short term schedulers (4) Dec 08/ Jan 09

2. Suppose following jobs arrive, each job runs the listed amount of time.

1. Job 2. 1 3. 2 4. 3

5. Arrival Time 6. 0.0 7. 0.4 8. 1.0

9. Burst Time 10. 8 11. 4 12. 1

i. give grant chart using non preemptive FCFS and SJF alg.

ii .what is turn around and waiting time of each job?

iii. compute average turn around time if CPU is idle for first 1 unit and then SJF is

used.

3. Define IPC.what are different methods used for logical implementations of

messagepassing systems. (6) Dec 2010.

4. Discuss common ways of establishing relationship between user and kernel thread(6)

Dec 2010.

5. Draw grant chart using preemptive SJF. Find avg waiting time for following data.

(8)Dec 2010.

Process 13. P1 14. P2 15. P3 16. P4 17. P5

Arrival Time 18. 0 19. 2 20. 3 21. 6 22. 30

Burst Time 23. 10 24. 12 25. 14 26. 16 27. 5

6. What is process? Draw and explain process state diagram. Explain PCB structure.

(10) July 2011

7. Consider 4 jobs with (AT and BT) as (0,5), (0.2,2) (.6,8) (1.2,4). Find avgturnaround

time and waiting time using FCGS, SJF and Rp(q=1). (10) July2011

8. What is the meaning of the term busy waiting?

9. Explain semaphores with the help of an example.

10. Explain dining philosopher’s problem, and how it is solved.

11. What is race condition? Explain how it is handled.

12. Define process synchronization.

13. How is producer-consumer problem with the help of semaphores?

OS (BCS303)

Dept. of CSD, ATMECE Page 69

Outcome

 Implement different process scheduling algorithms.

 Familiarized with inter process communication and multi-threaded programming.

 Familiarized with semaphores

 Solve critical section problem

 Implement synchronization

 Implement Peterson’s solution.

OS (BCS303)

Dept. of CSD, ATMECE Page 70

Further Reading
11. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System

Principles, 8th edition, Wiley India, 2009. (Listed topics only from Chapters 1 to 12,

17, 21)

12. D.M Dhamdhere: Operating systems - A concept based Approach, 2nd Edition, Tata

McGraw- Hill, 2002.

13. P.C.P. Bhatt: Introduction to Operating Systems: Concepts and Practice, 2nd

Edition, PHI, 2008.

14. Harvey M Deital: Operating systems, 3rd Edition, Pearson Education, 1990.

15. http://nptel.ac.in/courses/106106144

16. https://en.wikipedia.org/wiki/Operating_system

17. https://www.tutorialspoint.com/operating_system

18. http://www.studytonight.com/operating-system

19. https://www.linux.com

20. https://opensource.com

http://nptel.ac.in/courses/106106144
https://en.wikipedia.org/wiki/Operating_system
https://www.tutorialspoint.com/operating_system
http://www.studytonight.com/operating-system
https://www.linux.com/
https://opensource.com/

OS (BCS303)

Dept. of CSD, ATMECE Page 71

 MODULE 3

 Process Synchronization

Process Synchronization

Synchronization

The critical section problem

Peterson’s solution

synchronization hardware

semaphores

classical problems of synchronization monitors

Deadlocks

 System model

Deadlock characterization

Methods for handling deadlocks

Deadlock prevention

Deadlock avoidance

Deadlock detection and recovery from

deadlock

ASSIGNMENT QUESTION

OUTCOME

FURTHER READING

OS (BCS303)

Dept. of CSD, ATMECE Page 72 [Type here] [Type here]

Introduction

This unit gives the overview on deadlocks and deadlock characterization. Methods

for handling deadlocks are discussed. Methods of deadlock detection, prevention and

avoidances are highlighted. This unit gives overview of swapping and memory allocations

techniques. Paging, structure of page table and segmentation is discussed in detail.

Objective

 Understand what is deadlock.

 Understand the techniques for deadlock detection, prevention and avoidance.

 Understand the techniques to recover from deadlocks.

 Understand swapping

 Understand segmentation, contiguous memory allocation

SYNCHRONIZATION

Since processes frequently need to communicate with other processes therefore, there is a need for a well-

structured communication, without using interrupts, among processes.

Race Conditions
In operating systems, processes that are working together share some common storage (main memory, file

etc.) that each process can read and write. When two or more processes are reading or writing some shared

data and the final result depends on who runs precisely when, are called race conditions. Concurrently

executing threads that share data need to synchronize their operations and processing in order to avoid race

condition on shared data. Only one ‘customer’ thread at a time should be allowed to examine and update

the shared variable. Race conditions are also possible in Operating Systems.

 If the ready queue is implemented as a linked list and if the ready queue is being manipulated during the

handling of an interrupt, then interrupts must be disabled to prevent another interrupt before the first one

completes. If interrupts are not disabled than the linked list could become corrupt.

 1. count++ could be

implemented as

register1 =

count register

1 = register 1 + 1

count =register 1

2.count--could be implemented

 as register

2 = count register

2 = register2 – 1 count = register2

3.Consider this execution interleaving with “count = 5” initially:

OS (BCS303)

Dept. of CSD, ATMECE Page 73 [Type here] [Type here]

S0: producer execute register1 = count {register1 = 5}

S1: producer execute register1 = register1 + 1 {register1 = 6}

S2: consumer execute register2 = count {register2 = 5}

S3: consumer execute register2 = register2 -1 {register2 = 4}

S4: producer execute count = register1 {count = 6 }

S5: consumer execute count = register2 {count = 4}.

THE CRITICAL SECTION PROBLEM
Mutual Exclusion -If process Pi is executing in its critical section, then no other processes can be executing

in their critical sections

1. Progress -If no process is executing in its critical section and there exist some processes that wish to

enter their critical section, then the selection of the processes that will enter the critical section next cannot

be postponed indefinitely

2.Bounded Waiting -A bound must exist on the number of times that other processes are allowed to enter

their critical sections after a process has made a request to enter its criticalsection and before that request is

granted

• Assume that each process executes at a nonzero speed

• No assumption concerning relative speed of the N processes

The key to preventing trouble involving shared storage is find some way to prohibit more than one process

from reading and writing the shared data simultaneously. That part of the program where the shared

memory is accessed is called the Critical Section. To avoid race conditions and flawed results, one must

identify codes in Critical Sections in each thread. The characteristic properties of the code that form a

Critical Section are Codes that reference one or more variables in a “read-update-write” fashion while any

of those variables is possibly being altered by another thread. x Codes that alter one or more variables that

are possibly being referenced in “read-updata-write” fashion by another thread. x Codes use a data

structure while any part of it is possibly being altered by another thread. x Codes alter any part of a data

structure while it is possibly in use by another thread.Here, the important point is that when one process is

executing shared modifiable data in its critical section, no other process is to be allowed to execute in its

critical section. Thus, the execution of critical sections by the processes is mutually exclusive in time.

3. MUTUAL EXCLUSION

 A way of making sure that if one process is using a shared modifiable data, the other processes will

be excluded from doing the same thing. Formally, while one process executes the shared variable, all other

processes desiring to do so at the same time moment should be kept waiting; when that process has

OS (BCS303)

Dept. of CSD, ATMECE Page 74 [Type here] [Type here]

finished executing the shared variable, one of the processes waiting; while that process has finished

executing the shared variable, one of the processes waiting to do so should be allowed to proceed. In this

fashion, each process executing the shared data (variables) excludes all others from doing so

simultaneously. This is called Mutual Exclusion.

Note that mutual exclusion needs to be enforced only when processes access shared modifiable data when

processes are performing operations that do not conflict with one another they should be allowed to

proceed concurrently.

Mutual Exclusion Conditions
If we could arrange matters such that no two processes were ever in their critical sections

simultaneously, we could avoid race conditions. We need four conditions to hold to have a good solution

for the critical section problem (mutual exclusion).

• No two processes may at the same moment inside their critical sections.

 No assumptions are made about relative speeds of processes or number of CPUs.

• No process should outside its critical section should block other processes.

• No process should wait arbitrary long to enter its critical section.

PETERSON’S SOLUTION

The mutual exclusion problem is to devise a pre-protocol (or entry protocol) and a postprotocol (or exist

protocol) to keep two or more threads from being in their critical sections at the same time. Tanenbaum

examine proposals for critical-section problem or mutual exclusion problem.

Problem

When one process is updating shared modifiable data in its critical section, no other process should

allowed to enter in its critical section.

Proposal 1 -Disabling Interrupts (Hardware Solution)

Each process disables all interrupts just after entering in its critical section and re-
enable all interrupts just before leaving critical section. With interrupts turned off the
CPU could not be switched to other process. Hence, no other process will enter its critical
and mutual exclusion achieved.

Conclusion

Disabling interrupts is sometimes a useful interrupts is sometimes a useful technique

within the kernel of an operating system, but it is not appropriate as a general mutual
exclusion mechanism for users process. The reason is that it is unwise to give user process
the power to turn off interrupts.

Proposal 2 -Lock Variable (Software Solution)

In this solution, we consider a single, shared, (lock) variable, initially 0. When a process

wants to enter in its critical section, it first test the lock. If lock is 0, the process first sets it to 1

OS (BCS303)

Dept. of CSD, ATMECE Page 75 [Type here] [Type here]

and then enters the critical section. If the lock is already 1, the process just waits until
(lock)

variable becomes 0. Thus, a 0means that no process in its critical section, and 1 means hold

your horses -some process is in its critical section.

Conclusion

The flaw in this proposal can be best explained by example. Suppose process A sees that
the lock is 0. Before it can set the lock to 1 another process B is scheduled, runs, and sets the
lock to 1. When the process A runs again, it will also set the lock to 1, and two processes will
be in their critical section simultaneously.

Proposal 3 -Strict Alteration

In this proposed solution, the integer variable 'turn' keeps track of whose turn is to enter
the critical section. Initially, process A inspect turn, finds it to be 0, and enters in its critical

section. Process B also finds it to be 0 and sits in a loop continually testing 'turn' to see when it
becomes 1.Continuously testing a variable waiting for some value to appear is called the Busy-
Waiting.

Conclusion

Taking turns is not a good idea when one of the processes is much slower than the other.
Suppose process 0 finishes its critical section quickly, so both processes are now in their
noncritical section. This situation violates above mentioned condition 3.

Using Systems calls 'sleep' and 'wakeup'

Basically, what above mentioned solution do is this: when a processes wants to enter in

its critical section , it checks to see if then entry is allowed. If it is not, the process goes into
tight loop and waits (i.e., start busy waiting) until it is allowed to enter. This approach waste
CPU-time.

Now look at some interprocess communication primitives is the pair of steep-wakeup.

Sleep

O It is a system call that causes the caller to block, that is, be
suspended until some other process wakes it up. xWakeup

O It is a system call that wakes up the process.

Both 'sleep' and 'wakeup' system calls have one parameter that represents
a memory address used to match up 'sleeps' and 'wakeups' .

OS (BCS303)

Dept. of CSD, ATMECE Page 76 [Type here] [Type here]

The Bounded Buffer Producers and Consumers

The bounded buffer producers and consumers assumes that there is a
fixed buffer size i.e., a finite numbers of slots are available

STATEMENT

To suspend the producers when the buffer is full, to suspend the consumers when the buffer
is empty, and to make sure that only one process at a time manipulates a buffer so there are no
race conditions or lost updates. As an example how sleep-wakeup system calls are used, consider
the producer-consumer problem also knownas bounded buffer problem. Two processes share a
common, fixed-size (bounded) buffer. The producer puts information into the buffer and the
consumer takes information out.

Trouble arises when

1. The producer wants to put a new data in the buffer, but buffer is already full. Solution:
Producer goes to sleep and to be awakened when the consumer has removed data.

2. The consumer wants to remove data the buffer but buffer is already empty. Solution:
Consumer goes to sleep until the producer puts some data in buffer and wakes
consumer up.

Conclusion

This approaches also leads to same race conditions we have seen in earlier approaches. Race
condition can occur due to the fact that access to 'count' is unconstrained. The essence of the
problem is that a wakeup call, sent to a process that is not sleeping, is lost.

OS (BCS303)

Dept. of CSD, ATMECE Page 77

 [Type here] [Type here]

SYNCHRONIZATION HARDWARE

1. Many systems provide hardware support for critical section code

2. Uniprocessors – could disable interrupts

• Currently running code would execute without preemption

• Generally too inefficient on multiprocessor systems

• Operating systems using this not broadly scalable

• 3. Modern machines provide special atomic hardware

instructions Atomic = non-interruptable

• Either test memory word and set value

• Or swap contents of two memory words

SEMAPHORES

E.W. Dijkstra (1965) abstracted the key notion of mutual exclusion in his concepts of

semaphores.

Definition

A semaphore is a protected variable whose value can be accessed and altered only by the
operations P and V and initialization operation called 'Semaphoiinitislize'.Binary
Semaphores can assume only the value 0 or the value 1 counting semaphores also called
general semaphores can assume only nonnegative values. The P (or wait or sleep or down)
operation on semaphores S, written as P(S) or wait (S), operates as follows:

OS (BCS303)

Dept. of CSD, ATMECE Page 78

P(S):IFS>0

THEN S:= S-1

ELSE (wait on S)

The V (or signal or wakeup or up) operation on semaphore S, written as V(S) or

signal (S), operates as follows:

V(S):IF(one or more process are waiting on S)

THEN (let one of these processes

proceed) ELSE S := S +1

Operations P and V are done as single, indivisible, atomic action. It is guaranteed that
once a semaphore operations has stared, no other process can access the semaphore
until operation has completed. Mutual exclusion on the semaphore, S, is enforced
within P(S) and V(S).

If several processes attempt a P(S) simultaneously, only process will be allowed to
proceed. The other processes will be kept waiting, but the implementation of P and V

OS (BCS303)

Dept. of CSD, ATMECE Page 79

guarantees that processes will not suffer indefinite postponement. Semaphores solve
the lost-wakeup problem.

Semaphore as General Synchronization Tool

1. Counting semaphore – integer value can range over an unrestricted domain.

2. Binary semaphore – integer value can range only between and 1; can be
simpler to implement Also known as mutex locks.

3. Can implement a counting semaphore S as a binary semaphore.
4. Provides mutual exclusion

• Semaphore S; // initialized to 1

• wait (S);

Critical Section

signal (S);

Semaphore Implementation

1. Must guarantee that no two processes can execute wait () and signal () on the

same semaphore at the same time

2. Thus, implementation becomes the critical section problem where the wait and

signal code are placed in the crtical section. Could now have busy waiting in critical

section implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• 3. Note that applications may spend lots of time in critical sections and
therefore this is not a good solution.

• Operations P and V are done as single, indivisible, atomic action. It is
guaranteed that once a semaphore operations has stared, no other process can
access the semaphore until operation has completed. Mutual exclusion on the
semaphore, S, is enforced within P(S) and V(S).

• If several processes attempt a P(S) simultaneously, only process will be allowed
to proceed. The other processes will be kept waiting, but the implementation of
P and V guarantees that processes will not suffer indefinite postponement.
Semaphores solve the lost-wakeup problem

OS (BCS303)

Dept. of CSD, ATMECE Page 80

• If we could arrange matters such that no two processes were ever in their critical

sections simultaneously, we could avoid race conditions. We need four
conditions to hold to have a good solution for the critical section problem
(mutual exclusion).

• xNo two processes may at the same moment inside their critical sections.
• xNo assumptions are made about relative speeds of processes or number of CPUs
• xNo process should outside its critical section should block other processes.
• x No process should wait arbitrary long to enter its critical section
• Note that mutual exclusion needs to be enforced only when processes

access shared modifiable data when processes are performing operations
that do not conflict with one another they should be allowed to proceed
concurrently.

• Semaphore Implementation with no Busy waiting

1. With each semaphore there is an associated waiting queue. Each entry

in a waiting queue has two data items:

value (of type integer)

pointer to next record in the list

2. Two operations:

block – place the process invoking the operation on the appropriate waiting

queue.

wakeup – remove one of processes in the waiting queue and place it in

the ready queue. -Implementation of wait:

wait (S)

{ value--;

if (value < 0) { add this process to waiting queue

block(); }

}

OS (BCS303)

Dept. of CSD, ATMECE Page 81

->Implementation of signal:

Signal (S){

value++;

if (value <= 0) {

remove a process P from the waiting queue

wakeup(P); }

CLASSICAL PROBLEMS OF SYNCHRONIZATION

1. Bounded-Buffer Problem
2. Readers and Writers Problem
3. Dining-Philosophers Problem

Bounded-Buffer Problem

1. N buffers, each can hold one item

2. Semaphore mutex initialized to the value 1
3. Semaphore full initialized to the value 0

4. Semaphore empty initialized to the value N.
5. The structure of the producer process while (true) {

// produce an item wait (empty); wait (mutex);

// add the item to the buffer signal (mutex); signal (full);

}

Dept. of CSD, ATMECE Page 90

OS (BCS303)

 (BCS303)

6. The structure of the consumer process

while (true) { wait (full); wait

(mutex);

// remove an item from buffer signal (mutex); signal (empty);

// consume the removed item }

Readers-Writers Problem

1. A data set is shared among a number of concurrent processes

. O Readers–only read the data set; they do not perform any updates

. O Writers–can both read and write.

2. Problem – allow multiple readers to read at the same time. Only one single writer

can access the shared data at the same time.

3. Shared Data

. O Data set

. O Semaphore mutex initialized to 1.

. O Semaphore wrt initialized to 1.

. O Integer readcount initialized to 0.

4. The structure of a writer process while (true) { wait (wrt) ; // writing is
performed

signal (wrt) ; }

Dept. of CSD, ATMECE Page 91

OS (BCS303)

 (BCS303)

5. The structure of a reader process

while (true) { wait (mutex) ; readcount ++ ; if (readcount == 1) wait (wrt) ; signal (mutex

// rea ding is

performed wait

(mute x) ;

readcount -

-;

if (readcount== 0) signal (wrt) ; signal (mutex) ;

}

Dining-Philosophers Problem

1. Shared data

. O Bowl of rice (data set)

. O Semaphore chopstick [5] initialized to 1

2. The structure of Philosopher i: While (true)

{ wait (chopstick[i]); wait (chopStick[

(i + 1) % 5]);

// eat signal (chopstick[i]); signal (chopstick[(i + 1) % 5]); // think

}

Problems with Semaphores

1. Correct use of semaphore operations:

2. . O signal (mutex) …. wait (mutex)

3. . O wait (mutex) … wait (mutex)

Dept. of CSD, ATMECE Page 92

OS (BCS303)

 (BCS303)

4. . O Omitting of wait (mutex) or signal (mutex) (or both)

MONITORS

1. high-level abstraction that provides a convenient and effective mechanism for

process synchronization

2. Only one process may be active within the monitor at a

time monitor monitor-name { // shared variable

declarations procedure P1 (…) { …. }

… procedurePn (…) {……}

Initialization code (….) { … } … }

Solution to Dining Philosophers

monitor DP

{ enum { THINKING; HUNGRY, EATING) state [5] ; condition self [5];

void pickup (int i) { state[i] = HUNGRY; test(i); if (state[i] != EATING) self [i].wait;

Dept. of CSD, ATMECE Page 93

OS (BCS303)

 (BCS303)

}

void putdown (int i) { state[i] = THINKING; // test left and

right neighbors test((i + 4) % 5); test((i + 1) % 5); }

void test (int i) { if ((state[(i + 4) % 5] != EATING) && (state[i] == HUNGRY) && (state[(i

+ 1) % 5] !=

EATING)) {

state[i] = EATING ; self[i].signal () ; } }

initialization_code() { for (int i = 0; i < 5; i++) state[i] = THINKING;

} ->Each philosopher I invokes the operations pickup() and putdown() in the

following sequence: dp.pickup (i) EAT dp.putdown (i)

Monitor Implementation Using Semaphores

1. Variables semaphore mutex; // (initially = 1) semaphore next; // (initially = 0) int next-

count =

0;

2. Each procedure F will be replaced by wait(mutex); …

bodyof F; … if (next-count > 0

signal(next) else signal(mutex);

Dept. of CSD, ATMECE Page 94

OS (BCS303)

 (BCS303)

1. Mutual exclusion within a monitor is ensured.
2. For each condition variable x, we have: semaphore x-sem; // (initially = 0) int x-

count = 0;
3. The operation x.wait can be implemented as: x-count++; if (next-count > 0)

signal(next); else

signal(mutex); wait(x-sem); x-count--;

6. The operation x.signal can be implemented as:

if (x-count > 0) { next-count++; signal(x-sem); wait(next); next-count--;

}

Producer-Consumer Problem Using Semaphores

The Solution to producer-consumer problem uses three semaphores, namely, full, empty

and mutex.

The semaphore 'full' is used for counting the number of slots in the buffer that are
full. The 'empty' for counting the number of slots that are empty and semaphore
'mutex' to make sure that the producer and consumer do not access modifiable
shared section of the buffer simultaneously.

Initialization

xSet full buffer slots to 0. i.e., semaphore Full = 0.xSet empty buffer slots to N.
i.e., semaphore empty = N. x Forcontrol access to critical section set mutex to 1.
i.e., semaphore mutex = 1.

Producer () WHILE (true) produce-Item (); P (empty); P (mutex); enter-Item () V

Dept. of CSD, ATMECE Page 95

OS (BCS303)

 (BCS303)

(mutex) V (full);

Consumer ()

WHILE (true) P (full) P (mutex); remove-Item (); V
(mutex); V (empty); consume-Item (Item)
}

DEADLOCK

In a multiprogramming system, several processes may compete for a finite number

of resources. If resources are not available process enters into waiting state. Sometimes

waiting process is never again able to change the state, because the resources it has

requested are held by other waiting processes, this situation is called a deadlock.

SYSTEM MODEL

A system consists of a finite number of resources to be distributed among a number

of competing processes.

A process must request a resource before using it and must release the resource after

using it. The number of resources requested may not exceed the total number of resources

available in the system.

Process may utilize a resource in the following sequence:-

 Request If the request cannot be granted immediately, then the requesting process

must wait until it can acquire the resource.

 Use the process can operate on the resource.

 Release the process releases the resource.

A set of processes is in a deadlock state when every process in the set is waiting for an

event that can be caused only by another process in the set.

DEADLOCK CHARACTERIZATION

NECESSARY CONDITIONS

A deadlock situation can arise if the following four conditions hold simultaneously

in a system:

 Mutual exclusion

At least one resource must be held in a non-sharable mode, i.e., only one process at

a time can use the resource. If another process requests that resource, the requesting

process must be delayed until the resource has been released.

Dept. of CSD, ATMECE Page 96

OS (BCS303)

 (BCS303)

 Hold and wait

A process must be holding at least one resource and waiting to acquire additional

resources that are currently being held by other processes.

Dept. of CSD, ATMECE Page 97

OS (BCS303)

 (BCS303)

 No preemption

Resources cannot be preempted, i.e., a resource can be released only voluntarily

by the process holding it, after that process has completed its task.

 Circular wait.

A set {P0, P1..., Pn }of waiting processes must exist suchthat P0is waiting

for a resource held by P1, P1 is waiting for a resourceheld by P2, Pn-1,is waiting for

a resource held by Pn, and Pnis waitingfor a resource held by Pn.

All four conditions must hold for a deadlock tooccur..

Resource-Allocation Graph

 Deadlocks can be described in terms of a directed graph calleda system resource-

allocation graph.

 Graph consists of a set of vertices Vand a set of edges E. The set of vertices V is

partitioned into two different typesof nodes: P = {P0, P1..., Pn }the set consisting of

all the active processes in thesystem, and R = {R1, R2,…..Rm}, the set consisting of

all resource types in thesystem.

 A directed edge from process Pito resource type Rjis denoted by Pi →Rj , it signifies

that process Pi has requested an instance of resource type Rj, andis currently waiting

for that resource. It is called as Request edge

 A directed edge from resource type Rjto process Pi is denoted by Rj→ Pi signifies

that are instance of resource type Rjhas been allocated to process Pi . It is called as

assignment edge.

 Process Pi is represented as a circle and each resource typeRjas a rectangle.

 Since resource type Rjmay have more than one instance, werepresent each such

instance as a dot within the rectangle.

 Requestedge points to only the rectangle Rj, whereas an assignment edge points to

one of the dots within the rectangle.

 Resource allocation graph in the below figure denotes

Dept. of CSD, ATMECE Page 98

OS (BCS303)

 (BCS303)

 The sets P, K and E:

P = {P1, P2, P3}

R= {R1, R2, R3, R4}

E ={P1→R1, P2→R3, R1→P2, R2→P2, R2→P1, R3→P3 }

 Resource instance

R1 → 1 Instance

R2 → 2Instance

R3 → 3Instance

R4 → 4Instance

 Process states

 Process P1is holding an instance of resource type R2 and is waiting for an

instance of resource type R1

 Process P2 is holding an instance of R2and an instance of R1 and iswaiting for

an instance of R3.

 Process P3 is holding an instance of R3.

 If resource-allocation graphcontains no cycles, then no process in the system is

deadlocked. Ifthe graph contain a cycle, then a deadlock may exist.

 If the cycle involves set of resource with single instance, then each processinvolved

in the cycle is deadlocked. Cycle in the graph is both necessary & sufficient

condition for the existence of a deadlock.

Dept. of CSD, ATMECE Page 99

OS (BCS303)

 (BCS303)

 If each resource type has several instance then cycle in the graph is a necessary but

not a sufficient condition for the existence of deadlock.

 If a resource-allocation graph does not have a cycle, then the system is not in a

deadlocked state. If there is cycle then the system may or may not be in a deadlock

state.

Methods for Handling Deadlocks

Three ways used to deal with deadlock problem are:

 Protocol is used to prevent or avoid deadlocks, ensuring that the system will never

enter a deadlock state.

 System is allowed to enter a deadlock state, later it is detected and recovered.

 Problem is ignored altogether and pretended that deadlocks never occurred in the

system.

To ensure that deadlocks never occur, the system can use either a deadlock prevention or

a deadlock avoidance scheme.

Deadlock Prevention
For a deadlock to occur, each of the four necessary conditions must hold. By

ensuring that at least one of these conditions cannot hold, we can prevent the occurrence of

a deadlock.

 Mutual exclusion

Mutual exclusion condition must hold for non-sharable resources. We

cannot prevent deadlock by denying the mutual exclusion condition, because some

resources are intrinsically non-sharable.

 Hold and wait

To avoid hold and wait condition the operating system must ensure that,

whenever a process requests a resources it will not hold any other resource

simultaneously.

Two possible solutions used to achieve this are:-

 Whenever a process requests resources, all the resources are allocated to it

before it executes.

Dept. of CSD, ATMECE Page 100

OS (BCS303)

 (BCS303)

 Allow a process to request resources only when it does not have any

resources. i.e., whenever a process gets some resources it should

immediately use them and before making additional request it must release

all the resources currently held by it.

 No preemption

If a process is holding some resources and requests for other resource that

cannot be met immediately then all resources held by that process will be

preempted.

The preempted resources are automatically added to the list of free

resources. The process may restart only when it gets the old resources and new

ones that are required.

 Circular wait

One way to ensure that this condition never holds is to impose a total

ordering of all resources types and to require that each process requests resources

in an increasing order of enumeration.

Deadlock Avoidance

Avoiding deadlocks requires additionalinformation about how resources are to be

requested. The system will consider resourcescurrently available, the resources currently

allocated to each process, and thefuture requests and releases of each process.

A deadlock-avoidance algorithmexamines the resource-allocation state to ensure

that a circularwaitcondition can never exist. The resource-allocation state is defined by

thenumber of available and allocated resources and the maximum demands ofthe processes.

Dept. of CSD, ATMECE Page 101

OS (BCS303)

 (BCS303)

Safe State

 A state is safe if the system can allocate resources to each process in some order

and still avoid a deadlock. A systemis in a safe state only if there exists a safe

sequence.

 A sequence of processes {P0, P1 ..., Pn } is a safe sequence for the current allocation

state if, for each Pi, the resource requests that Pi , can still make can be satisfied by

the currently available resources plus the resources held by all Pi , with j < i.

 If no such sequence exists, then the system state is said to be unsafe.

 A safe state is not a deadlocked state.

 An unsafe state may lead to a deadlock.

 With the concept of safe state we can define avoidance algorithm that ensure that

the system will never deadlock.

 Example for safe state

System consist of three processes P1 , P2 and P3 and one resource R1. Number of units

for R1 is 12. Consider following

MAXIMUM NEED CURRENT NEED

P1 10 (5 Required) 5

P2 4 (2 Required) 2

P3 9 (7 Required) 2

Available 3

At time to total allocated resource is 9 and 3 units of R1 is available.

At time to system is in safe state. Safe sequence is {P0, P1...... , Pn }

Dept. of CSD, ATMECE Page 102

OS (BCS303)

 (BCS303)

 i.e., Process P2 can immediately allocated all its resource (R1) and then return to

the system.

 Available units become 5.

 P1 gets all resources, finishes its execution and returns 10 units.

 Now P3 gets 7 units of R1. Finishes its execution and returns the resources.

 Now 12 units are available in the system.

Resource-Allocation-Graph Algorithm

 In addition to the request and assignment edges, a new type of edge, called a

claim edge is introduced.

 A claim edge Pi → Rjindicates that process Pi,may request resource Rj, atsome

time in the future. It is represented by dashed line.

 When process Pi ,requests resourceRj, the claim edge Pi → Rjis converted to a

request edge. Similarly, when aresource Rjis released by Pi, the assignment

edgeRj→ Piis reconverted toa claim edge Pi → Rj..

 Process Pi, requests resource Rj. The request can be grantedonly if converting the

request edge Pi → Rjto an assignment edge Rj→ Pidoes not result in the formation

of a cycle in the resource-allocation graph. Cycle detection algorithm is used to

check the safety.

 In this figure Suppose that P2requestsR2. Although R2is currently free, we cannot

allocate it to P2, since this action will create a cycle in the graph. A cycle indicates

that the system is in an unsafe state.

 If P1 requests R2,and P2 requestsR1, then a deadlock willoccur.

Dept. of CSD, ATMECE Page 103

OS (BCS303)

 (BCS303)

Banker's Algorithm

 Resource-allocation-graph algorithm is not applicable to a resourceallocationsystem

with multiple instances of each resource type.

 This algorithm could be used in a banking system to ensure that the bank

neverallocated its available cash in such a way that it could no longer satisfy

theneeds of all its customers.

 When a user requestsa set of resources, the system must determine whether the

allocation of theseresources will leave the system in a safe state. If it will, the

resources areallocated; otherwise, the process must wait until some other process

releasesenough resources.

 Data structures used in this algorithm are-

o Available :A vector of length m indicates the number of available

resourcesof each type. If Available [j] equals k, there are k instances of

resource typeRiavailable.

o Max :An n x m matrix defines the maximum demand of each process.If Max

 { i, j}= k , then process Pi may request at most k instances of

resource type Rj.

o Allocation :An n x in matrix defines the number of resources of each

typecurrently allocated to each process. If Allocation { i ,j } equals k, then

processPiis currently allocated k instances of resource type Rj.

Dept. of CSD, ATMECE Page 104

OS (BCS303)

 (BCS303)

o Need :An n x m matrix indicates the remaining resource need of

eachprocess. If Need{ i ,j } equals k, then process Pi may need k more

instances ofresource type Rjto complete its task.

o Need { i }{ j } = Max { i }{ j } – Allocation { i }{ j } .

Safety Algorithm

Safety algorithm is used to find the state of the system. i.e., System may be in safe

state or unsafe state.

1. Let work and finish be vector of length m and n respectively

Initialize

Work = Available

Finish { i} = Fale for i = 0,1, ……. n – 1

2. Find an i such that both

a. Finish { i}= False

b. Need i ≤ Work

If no such exists go to step 4

3. Work = Work + Allocation i

Finish { i} = t

Go to step 2

4. If finish { i} = = true for all i , then the system is in a safe state.

Resource-Request Algorithm

This algorithm determines if requests can be safely granted .let request i be the request

vector for process Pi. If Requesti [j] == k, thenprocess Pi,wants k instances of resource type

Rj. When a request for resourcesis made by process Pi, the following actions are taken:

1. If Requesti ≤Need i , go to step 2. Otherwise, raise an error condition, sincethe

process has exceeded its maximum claim.

2. If Request i ≤Available, go to step 3. Otherwise, Pi, must wait, since theresources

are not available.

3. Available= Available - Request i

Allocation i =Allocation i +Request i

Need i =Need i - Requesti

Dept. of CSD, ATMECE Page 105

OS (BCS303)

 (BCS303)

 If the resulting resource-allocation state is safe, the transaction is completed,and

process Pi is allocated its resources. However, if the new stateis unsafe, then Pimust

wait for Request i ,and the old resource-allocationstate is restored.

Example

System consists of five process (P1, P2, P3, P4, P5) and three resources (R1, R2, R3)

Resource type R1 has 10 instance

Resource type R2has 5 instance

Resource type R3has 7 instance

Following snapshot of the system has been taken

Allocation Max

Available

Process R1 R2 R3 R1 R2 R3 R1

R2 R3

P1 0 1 0 7 5 3 3

3 2

P2 2 0 0 3 2 2

P3 3 0 2 9 0 2

P4 2 1 1 2 2 2

P5 0 0 2 4 3 3

Content of need matrix is → Need = Max – Allocation

 Need

Process R1 R2 R3

P1 7 4 3
P2 1 2 2
P3 6 0 0
P4 0 1 1
P5 4 3 1

Currently the system is in safe state.

Safe sequence

Safe sequence is calculated as follow

1. Need of each process is compared with available.

If Need i ≤ Available i , then the resources are allocated to that process and process

will release the resource.

2. If need is greater than available, next process need us taken for comparison.

3. In the process example

Dept. of CSD, ATMECE Page 106

OS (BCS303)

 (BCS303)

Need of P1 is (7, 4, 3) and Available is (3,3,2)

Need ≥ Available → False

So system will move for next process

4. Need of P2 is (1, 2, 2) and Available is (3, 3, 2)

So Need ≤ Available (work)

(1, 2, 2) ≤ (3, 3, 2) = True

Then Finish {i } = True

Request of P2 is granted and P2 release the resource to the system.

Work = Work + Allocation.

Work = (3, 3, 2) +(2,0,0)

= (5,3,2)

This procedure is continued for all process

5. Process P3 Need (6, 0, 0) Available (5, 3, 2) move to next process

6. Process P4 Need (1, 1, 1) Available (5, 3, 2) need ≤ Available

(0,1,1) ≤(5,3,2)=True

Available = Available + Allocation

=(5,3,2) + (2,1,1)

=(7 4 3)

7. P5 Need (4 3 1) available (7 4 3) Need ≤ Available

P5 is granted

Available = Available + Allocation

=(7 4 3) + (0 0 2)

=(7 4 5)

8. Process P1 Need (7 4 3) and Available (7 4 5). If this request is granted then the

system may be in the deadlock state. After granting the request, available resource

is (0 0 2) so the system is in unsafe state.

9. Process P3 Need (6 0 0) Available (7 4 5) Need ≤ Available

P3 is granted

Available = Available + Allocation

=(7 4 3) + (3 0 2)

=(10 4 5)

10. P1 Need (7 4 3) and Available (10 4 7) Need ≤ Available

(7 4 3) ≤ (10 4 7) = True

Dept. of CSD, ATMECE Page 107

OS (BCS303)

 (BCS303)

P1 is granted

Available = Available + Allocation

=(10 4 7) + (010)

=(1057)

Safe sequence is { P2 P4 P5 P3 P1 }

Disadvantages of Bomker’s Algorithm

1. It requires that there be a fixed number of resources to allocate.

2. Algorithm requires that users state their maximum need in advance.

3. Number of users must remain fixed.

Deadlock Detection

 If a system does not employ either a deadlock-prevention or a deadlock-

avoidancealgorithm, then a deadlock situation may occur.

 System may provide:

o An algorithm that examines the state of the system to determine whethera

deadlock has occurred

o An algorithm to recover from the deadlock

Single Instance of Each Resource Type

 If all resources have only a single instance, then wait-for graph is used to detect

deadlock.

 Wait-for graph is obtained from resource-allocation graph by removing the

resource nodes and collapsing the appropriate edges.

 An edge P i → P jexistsin a wait-for graph if and only if the corresponding resource

allocation graph contains two edges Pi → R q and R q → P jfor some resource R q.

 A deadlock exists in the system if and only if the wait-for graph contains a cycle.

 To detect deadlocks, the system needs to maintain the wait-for graph and

periodically invoke an algorithm that searches for a cycle in the graph.

Several Instances of a Resource Type

 The wait-for graph scheme is not applicable to a resource-allocation systemwith

multiple instances of each resource type.

 A different deadlock detection algorithm is used for such system

 Data structures used are –

Dept. of CSD, ATMECE Page 108

OS (BCS303)

 (BCS303)

o Available : A vector of length m indicates the number of available resource

of each type

o Allocation : An n x m matrix defines the number of resources of each

type currently allocated to each process

o Request : An n x m matrix indicates the current request of each process. If

request { i } { j } = k, then process Pi is requesting k More instances of

resource type Rj.

 This algorithm checks every possible allocation sequence for the process that

remain to be completed.

1. Let work and Finish be vectors of length m and n respectively

Initialize Work = Available

For i =0,1,……., n-1 , if Allocation i ≠ 0, then Finish { i }= false;

other wise, Finsih { i } =true.

2. Find an index i such that both

a. Finish { i } == False

b. Request i ≤ work

c. If no such i exists, go to step 4

3. Work = Work + Allocation i

Finish { i } = true

Go to step 2

4. If Finish { i } = = False, for some i, 0≤i˂n, then the system is in adeadlocked state

If Finish { i } == false, then process Pi is deadlocked.

Recovery From Deadlock

Two Options for breaking a deadlock

 Abort one or more process to break the circular wait.

 Preempt some resourcesfrom one or more of the deadlocked processes.

Process Termination

 Abort all deadlocked processes. This method clearly will break thedeadlock cycle,

but at great expense;

 Abort one process at a time until the deadlock cycle is eliminated. In this each

process is aborted, a deadlock-detection algorithm must be invoked to determine

whether anyprocesses are still deadlocked.

Dept. of CSD, ATMECE Page 109

OS (BCS303)

Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt some

resources from processes and give these resources to other processes until the deadlock

cycle is broken.

Three issues need to be addressed are

 Selecting a victim. Which resources and which processes are to be preempted?

As in process termination, we must determine the order ofpreemption to minimize

cost.

 Rollback. If we preempt a resource from a process, what should be donewith that

process? Clearly, it cannot continue with its normal execution; itis missing some

needed resource.

 Starvation. How do we ensure that starvation will not occur? That is,how can we

guarantee that resources will not always be preempted fromthe same process?

Assignment Questions

1. Why is deadlock state more critical than starvation? Describe resource

allocationgraph with a deadlock, with a cycle but no deadlock. (8) Dec 07/Jan 08

2. What are two options for breaking deadlock? (7) Dec 07/Jan 08

3. What is wait-for graph? How is it useful for detection of deadlock? (5) Dec

07/Jan 08

4. Define race condition. List the requirements that a solution to critical section

problemmust satisfy. (4) Dec 08/Jan 09

5. Define algorithms Test() and set() and swap(). Show that they must satisfy

mutualexclusion. (6) Dec 08/Jan 09

6. Allocation request available

 A B C A B C A B

C

P0 0 1 0 0 0 0 0 0

0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

Dept. of CSD, ATMECE Page 110

OS (BCS303)

Show the system is not deadlocked by one safe sequence. At t2,p2 makes

oneadditional request for type C, show that system is deadlocked if request is

granted.(10) Dec 08/Jan 09.

7. Define hardware instructions test() , set() and swap(). Give algorithms to

implementmutual exclusion with these instructions. (6) Dec 09/ Jan 10

8. Describe necessary conditions for a deadlock situation to arise. (4) Dec 09/ Jan 10

9. Consider given chart and answer i) what is content of matrix need? i) is

systemsafe? iii) if request comes from p, arrives for (0,4,2,0), can it be granted ?

(12) dec 2010, june 2011.

VTU question paper questions

1. Why is deadlock state more critical than starvation? Describe resource

allocationgraph with a deadlock, with a cycle but no deadlock. (8) Dec 07/Jan 08

2. What are two options for breaking deadlock? (7) Dec 07/Jan 08

3. What is wait-for graph? How is it useful for detection of deadlock? (5) Dec 07/Jan

08

OS (BCS303)

 (BCS303)

Dept. of CSD, ATMECE Page 111

4. Define race condition. List the requirements that a solution to critical section

problemmust satisfy. (4) Dec 08/Jan 09

5. Define algorithms Test() and set() and swap(). Show that they must satisfy mutual

exclusion. (6) Dec 08/Jan 09

6. allocation request available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

Show the system is not deadlocked by one safe sequence. At t2,p2 makes

oneadditional request for type C, show that system is deadlocked if request is

granted.(10) Dec 08/Jan 09.

7. Define hardware instructions test() , set() and swap(). Give algorithms to

implementmutual exclusion with these instructions. (6) Dec 09/ Jan 10

8. Describe necessary conditions for a deadlock situation to arise. (4) Dec 09/ Jan 10

9. Consider given chart and answer

i. what is content of matrix need?

ii. Is systemsafe?

iii. If request comes from p, arrives for (0,4,2,0), can it be granted ? (12) dec

2010, jun 2011.

10 What do you mean by fragmentation? Explain difference between internal and

external fragmentation. (6) Dec 07/Jan 08

11. For page reference string : 1,2,3,4,2,1,5,6,2,1,2,3,7,6,3,2,1,2,3,6, how many

pagefaults would occur for LRU and optimal alg. Assuming 2 and 6 frames. (10)

Dec 07/Jan 08

12. What is the cause of thrashing? How does system detect thrashing? (4) Dec 07/Jan

08, Dec 08/Jan 09, Dec 09/ Jan 10, june 2011.

13. Differentiate between internal and external fragmentation. How are they

overcome?(4)

14. What is paging and swapping? (4) Dec 08/Jan 09.

15. With diagram, discuss steps involved in handling a page fault. (6)) Dec 09/ Jan 10

OS (BCS303)

 (BCS303)

Dept. of CSD, ATMECE Page 112

16. What is address binding? Explain with necessary steps, binding instructions and

datato memory addresses. (8) Dec 09/ Jan 10

Recommended question

1. What is paging ? Give advantages and disadvantages.

2. What is segmentation? Give advantages & disadvantages.

3. Differentiate between paging & segmentation.

4. What are the different methods of implementing page table?

5. How can you ensure protection & sharing in paging?

6. What is fragmentation? Explain different types of fragmentation.

7. Explain swapping .

8. How to satisfy a request of size n from a list of free holes? Explain.

9. Explain the following:

a) privileged instruction

b) transient code

c) 50-percent role

d) Roll in, roll out

e) Compaction

10. How can you ensure hardware address protection with base & limit registers?

11. Explain address binding using base & limit registers.

12. What is dynamic loading ? Give advantages.

13. Explain the following:

a) Frame table

b) Hit ratio

c) Re-entrant code

d) Legal page

e) TLB

14. Give a brief idea on dynamic linking & shared libraries.

OTHER IMPORTANT QUESTIONS:

1. For the following snapshot of the system find the safe sequence (using

Banker’salgorithm).

OS (BCS303)

 (BCS303)

Dept. of CSD, ATMECE Page 113

a. Calculate the need of each process?

b. To find safe sequence?

2. Consider the following snapshot of the system and answer the following questions

using Banker’s

algorithm?

a. Find the need of the allocation?

b. Is the system is in safe state?

c. If the process P1 request (0,4,2,0) resources cam the request be granted immediately?

3. The operating system contains three resources. The numbers of instances of each

resource type are (7, 7,10). The current allocation state is given below.

a. Is the current allocation is safe?

b. find need?

c. Can the request made by the process P1(1,1,0) can be granted?

4. Explain different methods to recover from deadlock?

5. Write advantage and disadvantage of deadlock avoidance and deadlock prevention?

Dept. of CSD, ATMECE Page 114

OS (BCS303)

 (BCS303)

Outcome

 Familiarized with deadlock detection, prevention, avoidance and recovery from

deadlock.

 Familiarized with swapping

 Familiarized with segmentation, contiguous memory allocation

 Know the segmentation,

Further Reading

21. Abraham Silberschatz, Peter Baer Galvin, Greg Gagne: Operating System

Principles, 8th edition, Wiley India, 2009. (Listed topics only from Chapters 1 to 12,

17, 21)

22. D.M Dhamdhere: Operating systems - A concept based Approach, 2nd Edition, Tata

McGraw- Hill, 2002.

23. P.C.P. Bhatt: Introduction to Operating Systems: Concepts and Practice, 2nd Edition,

PHI, 2008.

24. Harvey M Deital: Operating systems, 3rd Edition, Pearson Education, 1990.

25. http://nptel.ac.in/courses/106106144

26. https://en.wikipedia.org/wiki/Operating_system

27. https://www.tutorialspoint.com/operating_system

28. http://www.studytonight.com/operating-system

29. https://www.linux.com

https://opensource.com

http://nptel.ac.in/courses/106106144
https://en.wikipedia.org/wiki/Operating_system
https://www.tutorialspoint.com/operating_system
http://www.studytonight.com/operating-system
https://www.linux.com/
https://opensource.com/

OS (BCS303)

Dept. of CSD, ATMECE Page 115

MODULE 4:

MEMORY MANAGEMENT

Memory Management:

Memory management strategies:

Background

Swapping

Contiguous memory allocation

Paging

Structure of page table

Segmentation.

Virtual Memory Management

 Background

 Demand paging

Copy-on-write

Page replacement

Allocation of frame

Assignment Questions

Outcome

Further Reading

OS (BCS303)

Dept. of CSD, ATMECE

Background
Memory consists of a large array of words or bytes, eachwith its own address.A instruction

execution cyclefetches an instructionfrom memory. The instruction is then decoded and may cause

operandsto be fetched from memory.After the instruction has been executed on theoperands, results may

be stored back in memory.

Basic Hardware

 Main memory and the registers are the onlystorage that the CPU can access directly. Any instructions

in execution, and any data used by the instructions,must be in one of these direct-access storage devices.

Cache memory is provided to support faster data access. Protection must be provided from unauthorized

access. To provide this we need to make sure that each process has a separate memory space. We can

achieve this by using two register o Base register holds the smallest legal physical memory address o Limit

register specifies the size of the range

OS (BCS303)

Dept. of CSD, ATMECE

Ex: If the base register holds 30004 and limit register is 12090 then the program can legally

access all addresses from 30004 through 42094(inclusive)

 Protection of memory space is accomplished by having the CPU hardwarecompare

even/ address generated in user mode with the registers. Any attemptby a program

executing in user mode to access operating-system memory orother users' memory

results in a trap to the operating system, which treats theattempt as a fatal error

OS (BCS303)

Dept. of CSD, ATMECE

Address Binding

 Usually, a program resides on a disk as a binary executable file. To be executed,the

program must be brought into memory and placed within a process

 Most systems allow a user process to reside in any part of the physicalmemory.

(Thus, although the address space of the computer starts at 00000,the first address

of the user process need not be 00000.)

 Addresses in the source program are generally symbolic (such ascount).

 A compiler will typically bind these symbolic addresses to relocatableaddresses

(such as "14 bytes from the beginning of this module'').

 The linkageeditor or loader will in turn bind the relocatable addresses to absolute

addresses(such as 74014).

 Each binding is a mapping from one address space to another. Binding canbe done at

following stages:

 Compile timeAt the time of complication if we know the location of process,

then absolute code can be generated.

 Load time If it is not known at compile time where the process will residein

memory, then the compiler must generate relocatable code.

 Execution time. If the process can be moved during its execution fromone

memory segment to another, then binding must be delayed until runtime.

Logical Versus Physical Address Space

 An address generated by the CPU is commonly referred to as a Logical address.

 An address seen by the memory unit—that is, the one loaded intothe memory- address

register of the memory—is commonly referred to as aPhysical address.

 The set of all logical addressesgenerated by a program is a logical address space; the

set of all physicaladdresses corresponding to these logical addresses is a Physical

address space.

 The execution-time address-bindingscheme the logical and physical addresses space

differ. In this case,we usually refer to the logical address as a virtual address.

 The run-time mapping from virtual to physical addresses is done by ahardware device

called the memory-management unit (MMU).

 Relocation registeris also called base register.

 Value of the relocation register is added to every address generated by auser process

OS (BCS303)

Dept. of CSD, ATMECE

at the time it is sent to memory.

For example, base is at 14000, thenan attempt by the user to address location 0

isdynamically relocated to location 14000; an access to location 346 is mappedto

location 14346.

 The user program never sees the real physical addresses. It deals with logical

addresses.

Dynamic Loading

 Dynamic loading is used for better memory space utilization. User program size is large

as compared to memory size, Program or process are dynamically loaded into memory

as per required. With dynamic loading, a routine is not loaded untilit is called. All

routines are kept on disk in a relocatable load format. The mainprogram is loaded into

memory and is executed.

 The advantage of dynamic loading is that an unused routine is neverloaded.

 Dynamic loading does not require special support from the operatingsystem.

Dynamic Linking and Shared Libraries

 In this linking of system libraries are postponeduntil execution time.

 Without this facility, each program on a systemmust include a copy of its language

library in the executable image. It wastes both diskspace and main memory.

OS (BCS303)

Dept. of CSD, ATMECE

 With dynamic linking, a stub is included in the image for each libraryroutinereference.

When it is executed it replaces itself with the address of the routine and executes the

routine.

 This feature is also for library updates (such as bug fixes). Alibrary may be replaced

by a new version, and all programs that reference thelibrary will automatically use the

new version.

 Only programs that are compiled withthe new library version are affected by the

incompatible changes incorporatedin it. Other programs linked before the new library

was installed will continueusing the older library. This system is also known as shared

libraries.

Swapping

 A process must be loaded into memory in order to execute. If there is not enough

memory to keep all process then A processcan beswapped temporarily out of memory

to a backing store and then broughtback into memory for continued execution.

 If a higher-priority process arrives and wants service, the memorymanager can swap

out the lower-priority process. When the higher-priority process finishes, the

 lower-priority process can be swapped back in and continued. This process is called

roll out, roll in.

 Normally, a process that is swapped out will be swapped back into thesame memory

space it occupied previously.

OS (BCS303)

Dept. of CSD, ATMECE

 Backing store is commonly a fastdisk. It must be large enough to accommodate copies

of all memory imagesfor all users, and it must provide direct access to these memory

images.

 Major part of the swap time is transfer time. The total transfer time is directly

proportional to the amount of memory swapped.

Contiguous Memory Allocation

 The main memory must accommodate both the operating system and thevarious

user processes.

 In the contiguous memory allocation, each process is contained in a

singlecontiguous section of memory.

Memory Mapping and Protection

Relocation register and limit register are used to map the memory. Memory

management unit maps the logical address dynamically by adding the value in the

relocation register.

Operating system protection by checking every address generated by the CPU

against these register values.

OS (BCS303)

Dept. of CSD, ATMECE

Memory Allocation

 Memory is divide memory into several fixed-sizedpartitions. Each partition may

contain exactly one process.

 The degreeof multiprogramming is bound by the number of partitions.

 In this multiplepartitionmethod, when a partition is free, a process is selected from the

input queue and loaded into the free partition. When the process terminates, thepartition

becomes available for another process.

 In the fixed-partition scheme, the operating system keeps a table indicatingwhich parts

of memory are available and which are occupied.

 Initially, allmemory is available for user processes and it is called ashole. When a

process arrives and needs memory, we searchfor a hole large enough for this process.

If any free hole is found, it is allocated to the process.

 The set of holes is searched to determine which hole is best to allocate. Memory

management uses three algorithms for selecting free holes

1) First fit

2) Best fit

3) Worst fit

First fit : First fit begins to scan memory from the beginning and chooses the first

available block that is large enough.

Best fit : It chooses the block that is closest in size to the request. It allocates the smallest

hole that is big enough.

Worst fit : It searches the entire list and allocate the largest hole.

Firs
t
fit

Memory

Processes 212

500 100

426 112 417

600 300 200

OS (BCS303)

Dept. of CSD, ATMECE

Bes
t
fit

Memory

Processes

Wors

t fit

Memory

Pr

500 200

112 417 212

300 100

426

600

500 200 300

426 112 417 212

600 100

OS (BCS303)

Dept. of CSD, ATMECE

Best fit algorithm makes efficient use of memory.

Fragmentation

 As processes are loaded and removed from memory,the free memory space is broken

into little pieces.

 External fragmentation existswhen there is enough total memory space to satisfy a

request, but the availablespaces isnot contiguous; storage is fragmented into a large

number of smallholes.

 solutionto external fragmentation is “compaction”. In this all free memory blocks are

grouped together as a large block.

 In Internal Fragmentation thethe memory allocated to a process may be slightly

larger than the requestedmemory. The difference between these two numbers is

internal fragmentation.This memory that is internal to a partition but is not being

used.

 In internal fragmentation the overhead to keep track of the hole will be larger than the

hole itself.

 In compaction process move towards one side of memory and holes move in the other

direction of memory. It produces one large hole of available memory.

Paging

 Paging permits the physical addressspace of a process to be noncontiguous.

Basic Method

 Physical memory is breakedinto fixed-sized blocks called “frames”

 Logical memory is breaked into blocks of same size called “pages”

 When a process is to be executed, its pages are loaded into any available memory

frames from the backing store.

OS (BCS303)

Dept. of CSD, ATMECE

 Every addressgenerated by the CPU is divided into two parts:

apage number (p) and

apage offset (d).

 The page number is used as an index into a page table.

 Thepage table contains the base address of each page in physical memory.

 Base address is combined with the page offset to define the physical

memoryaddress.

OS (BCS303)

Dept. of CSD, ATMECE

 When a process arrives in the system, each page of the process needs one frame. If

process requires n pages, at least n frames must be available in memory. The first page

of the process is loaded into one of the allocated frames and the frame number is put

in the page table for this process. This process is continued for all pages.

 Paging makes clear separation between user’s view of memory and actual

physical memory.

 Address-translation hardware translates logical address into physical addresses.

Hardware Support

 If page table is small (ex: 256 entries) a set of register are used to implement it.

 In large page-tables a page-table base register (PTBR) points to the page table. In

this memory access is very slow.

 Solution to this problem is use of “translation look-aside buffer (TLB)”

 Each entry in the TLB consists of two parts : a key and the value

“Working of TLB”

 TLB consists only a few of the page-table entries. When a logical address is generated

by the CPU, its page number is presented to the TLB. If the page number is found, its

frame number is available and is used to access memory. This process is called “TLB

hit”.

 If the page number is not in the TLB, a memory reference to the page table is made.

OS (BCS303)

Dept. of CSD, ATMECE

When the frame number is obtained, we can use it to access memory. It is referred as

“TLB miss”.

 Hit – RatioThe percentage of times that a particular page number is found in the TLB

iscalled the hit ratio.

 An 80-percent hit ratio means that we find the desired pagenumber in the TLB 80

percent of the time.

 If it takes 20 nanoseconds to searchthe TLB and 100 nanoseconds to access memory,

then a mapped-memory accesstakes 120 nanoseconds when the page number is in the

TLB.

 If page not present in TLB it takes 20 nanoseconds to search TLB, 100 nanoseconds to

access the desired byte for a total of”220” nanoseconds

To find effective access time = 0.80 x 120 + 0.20 x 220

= 140 nanoseconds.

We suffer a 40 – percent slowdown in memory – access time (from 100 to 140

nanoseconds)

OS (BCS303)

Dept. of CSD, ATMECE

 Ex2: Percentage slow-down for 98-percent hit ratio

To find effective access time = 0.98 x 120 + 0.20 x 220

= 122 nanoseconds.

Protection

 Protection bits are used to provide read write protection in paged environment. llegal
attempts will be trappedto the operating system.

 One additional bit is generally attached to each entry in the page table: avalid-invalid

bit.When this bit is set to "valid," the page is considered as a valid page. This page is

in the process’s logical address space.

Shared Pages

 Paging allows sharing of common code.

 Consider asystem that supports 40 users, each of whom executes a text editor. If the

texteditor consists of 150 KB of code and 50 KB of data space, we need 8,000 KB

tosupport the 40 users.

 If the code is reentrant code (it never changes during execution) it can be shared as

shown in the below fig.

OS (BCS303)

Dept. of CSD, ATMECE

 In this fig..we see a three-page-editor each page 50kb in size being shared among

three processes. Each process has its own data page.

 Thus to support 40 users, we need only one copy of editor(150kb) plus 40 copies of

50kb of data space per user. Total required space is 2150 kb instead 0f 8000kb.

Structure of the Page Table

 Hierarchical Paging

 Hashed Page Tables

 Inverted Page Tables

Hierarchical Paging [Forward – mapped Page table]

 Most modern computer systems support a large logical address space. In such an

environment, the page table itself becomes very large.

OS (BCS303)

Dept. of CSD, ATMECE

 In this case we would not want to allocate the page table contiguously inmain memory.

One simple solution to this problem is to divide the page tableinto smaller pieces.

 One way is to use a two-level paging algorithm, in which the page tableitself is also

paged.

 Ex: Consider a system with a 32-bit logical address space and page size is 4kb.A logical

address is divided into a page numberconsisting of 20 bits and a page offset consisting

of 12 bits.

A page number is further divided into a 10-bit page numberand a 10-bit page offset.

Thus, a logical address is as follows:

P1is an index into the outer page table and p2 is the displacementwithin the page of the

outer page table.

Hashed Page Tables

 Hash page table is used to handling address spaces larger than 32 bits.

 Virtual page number is the hash value.

OS (BCS303)

Dept. of CSD, ATMECE

Eachentry in the hash table contains a linked list of elements that hash to the

samelocation.

 Each element consists of three fields:

(1) Virtual page number,

(2) Value of the mapped page frame, and

(3) Pointerto the next element in the linked list.

 The virtual page number in the virtualaddress is hashed into the hash table. The

virtual page number is comparedwith field 1 in the first element in the linked list.

 If there is a match, thecorresponding page frame (field 2) is used to form the desired

physical address.

 If there is no match, subsequent entries in the linked list are searched for amatching

virtual page number.

Inverted Page Tables

 Inverted page table has one entry for each frame (real page) of memory.

 Each entryconsists of the virtual address of the page stored in that real memory

location,with information about the process that owns that page.

 Each virtual address in the system consists of atriple

<process-id, page-number, offset>.

OS (BCS303)

Dept. of CSD, ATMECE

Each inverted page-table entry is a pair <process-id, page-number>

 When a memoryreference occurs, part of the virtual address, consisting of

<process-id, pagenumber>,is presented to the memory subsystem.

 The inverted page tableis then searched for a match. If a match is found at entry ithen

thephysical address <i, or'fset> is generated. If no match is found, then an illegaladdress

access has been attempted.

Segmentation

 Users prefer to view memory as a collection of variable-sized segments., withno

necessary ordering among segments

OS (BCS303)

Dept. of CSD, ATMECE

 Ex:- Program is considered as a collection of main program, set of methods, data

structures etc.,

 Eachof these segments is of variable length.

 Elements within a segment areidentified by their offset from the beginning of the

segment.

 Segmentation is a memory-management scheme that supports this userview of

memory.

 A logical address space is a collection of segments. Eachsegment has a name and a

length.

 User specifies each addressby two quantities: a segment name and an offset. In paging

user specified only a single address.

 segments are numbered and are referredto by a segment number, rather than by a

segment name. Thus, a logical addressconsists of a two tuple:

<segment-number, offset >

Hardware

 Operating system will map two dimension user-defined address into one dimensional

physical address. This mapping is effected by a segment table.

 Each entry in the segment table has a segment base and a segment limit

OS (BCS303)

Dept. of CSD, ATMECE

 Segment base contains starting physical address where the segment resides in memory

segment limit specifies the length of the segment.

 Above fig illustrates the use of segment table. A logical address consist of two parts a

sgment number S and an offset into that segment d.

 The segment number is used as an index to the segment table.

 The offset d of the logical address must be between 0 and the segment limit

 If it is not trap is generated.

Ex: segment 2 is 400 bytes long and begins at location 4300.

A reference to byte 53 of segment 2 is mapped onto location 4300+53=4353.

OS (BCS303)

Dept. of CSD, ATMECE

OS (BCS303)

Dept. of CSD, ATMECE

Introduction

This unit gives the overview of file, access methods, file system mounting. File

sharing, protection and implementing file systems are discussed in detail. Different

allocation methods are highlighted. The concept of free space management and directory

implementations are introduced. The concept of virtual memory and demand paging

is discussed. The different page replacement algorithms with problems are highlighted. The

concept of trashing is introduced

Objective

 virtual memory management

 Know different page replacement algorithm

 Understand different file access methods

 Understand implementing file system

 Understand allocation methods and free space management

Virtual memory-management

 The instructions being executed must be in physical memory. Memory management

algorithms are required to satisfy this. It limits the size of a program to the size of

physical memory

 In many cases entire program is not needed at the same time.

Ex: Programs used to handle error conditions.

 Ability to execute a program that is only partially in memory has following

advantages

 Program is not constrained by physical memory

 More programs can be run at the same time.

OS (BCS303)

Dept. of CSD, ATMECE

 Virtual memory separates logical memory from physical memory.

 Large virtual memory is provided to user when only a smaller physical memory is

available.

 Virtual address space of a process refers to the logical view of how a process is

stored in memory.

OS (BCS303)

Dept. of CSD, ATMECE

 We allow for heap to grow upwards in memory. Similarly, we allow for stack to

grow downward in memory.

 Virtual memory also allows files and memory to be shared by two or more processes

through page sharing.

 System libraries can be shared by several process through mapping of the shared

object into a virtual address space.

OS (BCS303)

Dept. of CSD, ATMECE

Demand Paging

 In demand paging virtual memory system pages are only loaded when they are

demanded during program execution; pages that are never accessed are thus never

loaded into physical memory.

 A demand-paging system is similar to a paging system with swapping. Rather than

swapping the entire process, pages are swapped at the time of need.

 We thus use pager, rather than swapper, in connection with demand paging.

 Instead of swapping in a whole process, the pager brings only those pages into

memory. decreasing the swap time and the amount of physical memory needed.

 Pages in memory and pages on the disk can be distinguish by “valid-invalid” bit

scheme

 When the bit is set to “valid”, the page is in memory. If the bit is set to be “invalid”

page in on the disk.

OS (BCS303)

Dept. of CSD, ATMECE

OS (BCS303)

Dept. of CSD, ATMECE

 When the process tries to access a page that was not brought into memory it causes

page-fault trap

 Procedure for handling page fault is

1. Internal table is checked for respective page to determine whether the

reference was a valid or an invalid memory access.

2. If the reference was invalid, process is terminated. If it was valid, it is page in.

3. Free frame is searched

4. Disk operation is scheduled to read the desired page into the newly allocated

frame.

OS (BCS303)

Dept. of CSD, ATMECE

5. When the disk read is complete, internal table of the process is modified. Page

table is also modified to indicate that page is now in memory.

6. Instruction that was interrupted by the trap is restarted. The process can now

access the page as though it had always been in memory.

 “Pure demand paging” never brings a page into memory until it is required.

Performance of Demand Paging

 Computation of effective access time for a demand-paged memory.

 Let p be the probability of a page fault (0 ≤ p≤ 1). And ma is memory access time.

 We would expect p to be close to zero that is, we would expect to have only a few

page faults.

 The effective access time is then be effective access time = (1 - p) x ma + p x page fault

time.

OS (BCS303)

Dept. of CSD, ATMECE

 To compute the effective access time, we must know how much time isneeded to

service a page fault.

Three major components of page fault

1. Service the page-fault interrupt.

2. Read in the page.

3. Restart the process.

 The first and third tasks may take from 1 to 100 microseconds each.

 Page-switch time is close to 8 milliseconds.

 we take an average page-fault service time of 8 milliseconds and a memory-access

time of 200 nanoseconds, then the effective access time in nano seconds is

effective access time = (1 - p) x (200) + p (8 milliseconds)

= (1 - p) x 200 + p x 80,00000

= 200 + 7,999,800 x p.

 Effective access time is directly proportional to page-fault rate.

 It is important to keep the page-fault rate low in a demand-paging system. Otherwise

the effective access time increases, slowing process execution dramatically.

Copy-on-Write

 Copy-on-write works by allowing the parent and child processes initially to share

the same pages. These shared pages are marked as copy-on-write pages, meaning

that if either process writes to a shared page, a copy of the shared page is created.

 Copy-on-write is illustrated in below Figures, which show the contents of the

physical memory before and after process 1 modifies page C.

OS (BCS303)

Dept. of CSD, ATMECE

 Many operating systems provide a pool of free pages to satisfy copy-on-write

requests. Files are allocated using Zero-fill0on demand technique.

 Zero-fill-on-demand pages have been zeroed-out before being allocated, thus

erasing the previous contents.

Page Replacement

 Demand paging shares the I/O by not loading the pages that are never used.

 Demand paging also improves the degree of multiprogramming by allowing more

process to run at the sometime.

OS (BCS303)

Dept. of CSD, ATMECE

 Page replacement policy deals with the solution of pages in memory to be replaced

by a new page that must be brought in. When a user process is executing a page

fault occurs.

 The hardware traps to the operating system, which checks the internal table to see

that this is a page fault and not an illegal memory access.

 The operating system determines where the derived page is residing on the disk,

and this finds that there are no free frames on the list of free frames.

 When all the frames are in main memory, it is necessary to bring a new page to

satisfy the page fault, replacement policy is concerned with selecting a page

currently in memory to be replaced.

 The page i,e to be removed should be the page i,e least likely to be referenced in

future.

Working of Page Replacement Algorithm

1. Find the location of derived page on the disk.

2. Find a free frame

OS (BCS303)

Dept. of CSD, ATMECE

a. If there is a free frame, use it.

b. Otherwise, use a replacement algorithm to select avictim.

c. Write the victim page to the disk; change the page and frame tables

accordingly.

3. Read the desired page into the free frame; change the page and frame tables.

4. Restart the user process.

FIFO Page Replacement
 The simplest page-replacement algorithm is a first-in, first-out (FIFO) algorithm.

 In this case when a page must be replaced, the oldest page is chosen.

 Example reference string, is 7, 0,1, 2, 0, 3, 0, 4, 2, 3, 0, 3, 2,1, 2, 0, 1, 7, 0,1for a

memory with three frames.

 The first three references (7,0,1) cause page faults and are brought into empty

frames.

 The next reference (2) replaces page 7, because page 7 was brought in first.

 Since 0 is the next reference and 0 is already in memory, we have no fault for this

reference.

 The first reference to 3 results in replacement of page 0.This process continues as

shown in below fig resulting in 14 page faults.

 Page fault rate is very high in FIFO algorithm.

OS (BCS303)

Dept. of CSD, ATMECE

Belady's anomaly:

For some page-replacement algorithms, the page-fault rate may increase as the

number of allocated frames increases.

Ex:- Number of faults for four frames is greater than number of faults for three frames.

This unexpected result is called as Belady’s Anomaly.

Optimal Page Replacement

 An optimal page-replacement algorithm has the lowest page-fault rate of all

algorithms.

 It will never suffer from Belady's anomaly.

 It Replace the page that will not be used for the longest period of time.

 Fig

 For the reference string shown in the fig optimal page replacement gives nine page

faults

 The first three references cause faults that fill the three empty frames. The reference

to page2 replaces page 7, because 7 will not be used until reference 18, whereas

page0 will be used at 4, and page 1 at 14.

 Optimal page-replacement algorithm is difficult to implement, because it requires

future knowledge of the reference string.

LRU Page Replacement

 It replaces the page that has not been used for the longest period of time (Figure

9.14).

 LRU replacement associates with each page the time of that page's last use. When

a page must be replaced, LRU chooses the page that has not been used for the

longest period of time.

OS (BCS303)

Dept. of CSD, ATMECE

 LRU results in 12 page faults

 LRU Page-replacement may require hardware assistance for implementation.

 Two types of implementations are

2. Counters

3. Stack.

 Like optimal replacement, LRU does not suffer from Belady’s Anomaly. Both

belong to a class of algorithms called Stack algorithms.

LRU-Approximation Page Replacement

 Few computer systems provide sufficient hardware support for true LRU page

replacement.

 Many systems provide some help, in the form of a reference bit.

 The reference bit for a page is set by the hardware whenever that page is

referenced.

 Initially, all bits are cleared (to 0) by the operating system. As a user process

executes, the bit associated with each page referenced is set (to 1) by the hardware.

Additional-Reference-Bits Algorithm

 We can gain additional ordering information by recording the reference bits at

regular intervals.

 Operating system stores most recent 8 reference bits for each page in an 8-bit byte

in the page table entry.

 At periodic intervals, the Operating system right shifteach of the reference bytes

by one bit and discards low-order bit.

OS (BCS303)

Dept. of CSD, ATMECE

 These 8-bit shift registers contains history of page use for the last eight time periods.

 At any given time, the page with the smallest value for the reference byte is the

LRU page.

Second-Chance Algorithm

 The basic algorithm of second-chance replacement is a FIFO replacement

algorithm.

 When a page has been selected, however, we inspect its reference bit. If the value

is 0, we proceed to replace this page; but if the reference bit is set to 1, we give the

page a second chance and move on to select the next FIFO page.

 When a page gets a second chance, its reference bit is cleared, and its arrival time

is reset to the current time.

 Thus, a page that is given a second chance will not be replaced until all other pages

have been replaced (or given second chances).

 Circular queue is used to implement this

OS (BCS303)

Dept. of CSD, ATMECE

Enhanced Second-Chance Algorithm

 We can enhance the second-chance algorithm by considering the reference bit and

the modify bit as an ordered pair.

 With these two bits, we have the following four possible classes:

2) (0, 0) neither recently used nor modified—best page to replace

3) (0, 1) not recently used but modified—not quite as good, because the page will

need to be written out before replacement

4) (1., 0) recently used but clean—probably will be used again soon

5) (1,1) recently used and modified—probably will be used again soon, and the

page will be need to be written out to disk before it can be replaced.

 Each page is in one of these four classes.

OS (BCS303)

Dept. of CSD, ATMECE

 This algorithm searches the page table in a circular fashion, looking for the first

page it can find in the lowest numbered class. i.e., it first makes a pass looking for

a(0,0) and then if it can’t find one it makes another pass looking for (0,1) etc.

Counting-Based Page Replacement

 Counter is used to develop following schemes

b) Least frequently used (LFU) page-replacement algorithm It requires that the

page with the smallest count be replaced.

c) Most frequently used (MFU) It is based on the argument that the page with the

smallest count was probably just brought in and has yet to be used.

 The implementation of these algorithms is expensive.

Page-Buffering Algorithms

 There are number of page-buffering algorithms that can be used in conjunction with

the before-mentioned algorithms, to improve overall performance.

 Systems keep a pool of free frames. When a page fault occurs, a victim frame is

chosen as before.

 The desired page is read into a free frame from the pool before the victim is written

out. This procedure allows the process to restart as soon as possible, without waiting

for the victim page to be written out. When the victim is later written put, its frame

is added to the free-frame pool.

Applications and Page Replacement

 Some applications (database programs) Understand their data accessing and

caching needs better than the general purpose operating system, and should be given

their own memory management.

 Sometimes such programs are given a raw disk partition to work with, containing

raw data blocks and no file system structure. It is then up to the application to use

this disk partition as extended memory or for whatever other reasons it see fit.

Allocation of Frames

 The allocation policy in a virtual memory controls the operating system decision

regarding the amount of real memory to be allocated to each active process.

 In a paging system if more real pages are allocated, it reduces the page fault

frequency and improved turnaround throughput.

OS (BCS303)

Dept. of CSD, ATMECE

 If too few pages are allocated to a process its page fault frequency and turnaround

times may deteriorate to unacceptable levels.

 The minimum number of frames per process is defined by the architecture, and the

maximum number of frames. This scheme is called equal allocation.

 With multiple processes competing for frames, we can classify page replacement

into two broad categories

a) Local Replacement: requires that each process selects frames from only its own

sets of allocated frame.

b) Global Replacement: allows a process to select frame from the set of all frames.

Minimum Number of Frames

 We cannot, allocate more than the total number of available frames. We must also

allocate at least a minimum number of frames.

 One reason for allocating at least a minimum number of frames involves

performance. As the number of frames allocated to each process decreases, the

page-fault rate increases, slowing process execution.

 The minimum number of frames is defined by the computer architecture.

Allocation Algorithms

Equal Allocation

 If there are m frames available and n processes to share them, each process gets

m/n frames and leftovers are kept in a free-frame buffer pool.

Proportional Allocation

 Allocate the frame proportionally to the size of the process, relative to the total

size of all processes.

 Variations on proportions allocation could consider priority of process rather than

just their size.

Global versus Local Allocation

 With local replacement the number of pages allocated to process is fixed, and page

replacement occurs only amongst the pages allocated to this process.

OS (BCS303)

Dept. of CSD, ATMECE

 With global replacement, any page may be a potential victim, whether it currently

belongs to the process seeking a free frame or not.

 Local page replacement allows processes to better control their own page fault

rates.

 Global page replacement is more efficient, and more commonly used approach.

Thrashing

 If the process does not have the enough number of frames it needs to support pages

in active use, it will quickly page-fault at this point, it must replace some page. Since

all pages are in active use, it must replace a page that will be needed again right

away. So it quickly faults again and again.

 This high paging activity is called “Thrashing”. “A process is thrashing if it is

spending more time paging than executing”

Cause of Thrashing

 Early process scheduling schemes would control the level of multiprogramming

allowed based on CPU utilization, adding in more process when cpu utilization was

low.

 If a process needs more frames it starts faulting and taking frames away from other

process. These process need those pages, so they also fault, taking frames from other

processes. Because of this ready queue empties. CPU utilization decreases.

 CPU scheduler sees this and increases degree of multiprogramming. New process

takes frames from running process causing more page faults. CPU utilization drops

even further. Because of this effective memory access time increases.

OS (BCS303)

Dept. of CSD, ATMECE

 To prevent thrashing, we must provide a process with as many frames as they really

need “right now”. There are several techniques to achieve this.

 The working-set strategy defines the Locality model of process execution.

 The locality model states that, as a process executes, it moves from locality to

locality. A locality is a set of pages that are actively used together (Ex: When one

function exits and another is called)

Working-Set Model

working-set model is based on the assumption of locality. This model uses a

parameter, “∆”to define the working-set window. The idea is to examine the most recent

∆ page references. The set of pages in the most recent ∆ page references is the working

set.

If a page is in, active use, it will be in the working set. If it is no longer being

used, it will drop from the working set ∆ time units after its last reference.

OS (BCS303)

Dept. of CSD, ATMECE

For example, given the sequence of memory references shown in above Figure, if

∆ = 10 memory references, then the working set at time t1is {1, 2, 4,6, 7}. By time t2, the

working set has changed to {3, 4}.

The accuracy of the working set depends on the selection of ∆ . If A is too small, it

will not encompass the entire locality; if ∆ is too large, it may overlap several localities.

OS (BCS303)

Dept. of CSD, ATMECE

MODULE 5
File System, Implementation of File System

FILE STRUCTURE
File System, Implementation of File System:

File system

File concept

Access methods

Directory and Disk structure

File system mounting

File sharing

Implementing File system

File system structure

File system implementation

Directory implementation

Allocation methods

Free space management.

Secondary Storage Structure

Protection

Mass storage structure

Disk structure

Disk attachment

Disk scheduling

Disk management

Protection: Goals of protection

Principles of protection

Domain of protection

Access matrix.

OS (BCS303)

Dept. of CSD, ATMECE

File Concept

 Computers can store information on various storage media, operating system provides

a uniform logical view of information storage. This logical storage unit is called as a

file.

 Files are mapped by operating system onto physical devices. These storage devices

are nonvolatile, so contents are persistent through power failures and system reboots.

 File is a named collection of related information that is recorded on secondary

storage

 File structure : File has certain structure according to its type

 Text File : Sequence of characters organized into lines

 Source File : Sequence of subroutines and functions.

 Object File : Sequence of bytes organized into blocks understandable by the

system linker.

 Executable File : Series of code sections that the loader can bring into memory

and execute.

File Attributes

A file's attributes vary from one operating system to another but typically consist of these:

 Name: The symbolic file name is the only information kept in human readable form,.

 Identifier : Identifies the file within the file system.

 Type: Needed for systems which support multiple file types.

 Location: It is a pointer to a device and to the location of the file on that device.

 Size: The current size of the file (in bytes, words, or blocks)

 Protection: Access-control information determines who can do reading, writing,

executing.

 Time, date, and user identification :It includes details about creation time,

modification time and last use time of a file.

File Operations

Six basic file operations are :

Creating a file :Two steps are necessary to create a file.

 First, space in the file system must be found for the file.

 Second, an entry for the new file must be made in the directory.

OS (BCS303)

Dept. of CSD, ATMECE

Writing a file :

 System calls is used to perform the write operation.

 Name of the file and information are two required data to complete the write

operation.

Reading a file :

 System call is used to read a file.

 Name of the file is used to search the file. System needs to keep a read pointer to

the location in the file where the next read is to take place.

Delete a file:

 System will search the directory, which file to be deleted. If directory entry is found,

it releases all file space. That free space can be reused by other files.

Truncating a file:

 The user may want to erase the contents of a file but keep its attributes. Rather

than forcing the user to delete the file and then recreate it, truncate function allows

all attributes to remain unchanged except for all file length.

Repositioning within a file :

 The directory is searched for the appropriate entry, and the current-file-position

pointer is repositioned to a given value.

 This operation is also known as seek.

OS (BCS303)

Dept. of CSD, ATMECE

File Types

 File type is included as a part of the filename

 File name is split into two parts- a name and extension.

 Following table gives the file type with usual extension and function.

OS (BCS303)

Dept. of CSD, ATMECE

Access Methods

Sequential Access

 Sequential access is the simplest access method. Information in the file is

sequentially accessed, i.e., one record after the other.

 Editors, compilers usually access files in this method.

 Read operation reads the next portion of the file and automatically advances a file

pointer, which tracks the I/O location.

 Write operation appends to the end of the file and advances to the end of the

newly written material.

 Such a file can be reset to beginning.

OS (BCS303)

Dept. of CSD, ATMECE

Direct Access

 A file is made up of fixed length logical records that allow programs to read and

write records rapidly in no particular order.

 It is based on disk-model of a file.

 There are no restriction on the order of reading or writing for a direct-access file.

We may read block 14, then read block 43 and then write block 7.

 Direct access files are use full for immediate access to large amounts of

information

Ex: Data bases.

 In this file operations must include block number as a parameter.

 This block number is normally relative block number

Other Access Methods

 These methods involve the construction of an index for the file.

 Index contains pointers to the various blocks. To find a record in the file, we first

search the index and then use the pointer to access the file directly and to find the

desired record.

 This structure allows to search a large file.

 For very large files index for the index file can be created.

OS (BCS303)

Dept. of CSD, ATMECE

Directory Structure

 Directory can be viewed as a symbol table that translates file names into their

directory entries.

 Operations performed on a directory are

 Search for a file : We should be able to search a directory structure to find the

entry for a particular file

 Create a file : New files need to be created and added to the directory.

 Delete a file : When a file is no longer needed, we want to be able to remove

it from the directory.

 List a Directory : We need to be able to list the files in a directory.

 Rename a file : We must be able to change the name when the contents or use

of the file changes.

 Traverse the file system : We must be able to access every directory and

every file within a directory structure.

OS (BCS303)

Dept. of CSD, ATMECE

Different Types of Directory Structures are

Single-Level Directory

 It is the simplest directory structure

 All files are contained in the same directory, which is easy to support and

understand

 Limitation of single-level directory structure is

 Not suitable for a large number of files and more than one user.

 Because of single directory, files require unique file names.

 Difficult to remember the names of all the files as the number of files

increases.

Two-Level Directory

 In two level directory, each user has his own directory called as User file directory

(UFD)

 When a user refers to a particular file, only his own UFD is searched.

 Different users may have files with the same name. But file names within each

UFD must be unique.

OS (BCS303)

Dept. of CSD, ATMECE

 To create a file for a user, operating system searches only that users directory to

check whether another file of that name exists.

 Disadvantage of the two level directory is-it isolates one user from another-which

is a major problem when the users want to co-operate on some task and to access

one another’s files.

Tree-Structured Directories

 It allows users to create their own subdirectories and to organize their files

accordingly. A subdirectory contains a set of files or subdirectories.

 All the directories have the same internal format. One bit in each directory entry

defines the entry as a file or as a subdirectory.

 In normal use, each process has a current directory. The current directory should

contain most of the files that are of current interest to the user.

 When reference is made to a file, the current directory is searched. Path name is

used to search for any operation on file with another directory.

 Two types of path name are

 Absolute Path Name : Begins at the root and follows a path down to the

specified file, giving the directory names on the path.

 Relative Path Name : It defines a path from the current directory.

 When a request is made to delete a directory, all that directory files and

subdirectories are also be deleted.

OS (BCS303)

Dept. of CSD, ATMECE

 In a tree-structured directory, users can be allowed to access, other users files.

Acyclic-Graph Directories

 Acyclic-graph (Graph with no cycles) Allows directories to share subdirectory

and files.

 The same subdirectory may be in two different directories.

 With a shared file, only one actual file exists, so any changes made by one person

are immediately visible to the other.

OS (BCS303)

Dept. of CSD, ATMECE

 Shared files and subdirectories can be implemented by using links.

 Link is implemented as a absolute or relative path name.

 An acyclic graph directory structure is more flexible than a simple tree structure

but sometimes it is more complex.

General Graph Directory

 A problem with using an acyclic-graph structure is ensuring that there are no

cycles.

 Whenever we add links to an existing tree-structured directory, the tree structure is

destroyed, resulting in a simple graph structure.

OS (BCS303)

Dept. of CSD, ATMECE

File-System Mounting
 File system must be mounted before it can be available to process on the system.

 Procedure for mounting a file system is

 Mount point is an empty directory at which the mounted file system will be

attached

 Name of the device and location within the file structure at which to attach the

file system is required.

 Operating system verifies that the device contains a valid file system

 Device driver is used by Operating system for these verifications

 Finally operating system mounts the file system at a specified mount point.

OS (BCS303)

Dept. of CSD, ATMECE

 In a fig (a), an existing file system is shown and in fig (b) an un-mounted partition

residing an /device/dsk is shown. At this point, only the files on the existing file

system can be accessed.

 Fig : Mount Point shows the effects of the mounting of the partition residing on

/device/dsk over user. If the partition is un-mounted, the file system is restored to

the situation before mount operation.

OS (BCS303)

Dept. of CSD, ATMECE

File Sharing

Multiple Users

 Given a directory structure that allows files to be shared by users, the operating

system must mediate the file sharing.

 The system either can allow a user to access the files of other users by default or it

may require that a user specifically grant access to the files.

 To implement sharing and protection, the system maintain more file and directory

attributes than on a single user system, most systems support the concept of file

owner and group.

 When a user requests an operation on a file, the user ID can be compared to the

owner attribute to determine if the requesting user is the owner of the file. Likewise

the group ID’s can be compared. The result indicates which permissions are

applicable.

Remote File Systems :

 Remote sharing of the file system is implemented by using network

 Network allows the sharing of resources. File Transfer Protocol (FTP) is one o the

methods used for remote sharing. Other methods re distributed file system and

world wide web.

 Client-server Model : System containing the files is the server and the system

requesting access to the files is a client. Files are specified on a partition or

subdirectory level. A server can serve multiple clients and a client can use

multiple servers.

 Distributed Information systems: For managing client server services,

distributed information system is used to provide a unified access to the

information needed for remote computing.

 UNIX systems have a wide variety of distributed information methods.

 The domain name system (DNS) provides host-name-to-network-address

translations for the entire internet.

OS (BCS303)

Dept. of CSD, ATMECE

Protection

Information must be protected from a physical damage and improper access i.e.,

reliability and protection.

Types of Access

 Protection mechanisms provide controlled access by limiting the types offile access

that can be made. Access is permitted or denied depending onseveral factors, one of

which is the type of access requested. Several differenttypes of operations may be

controlled: They are

 Read. Read from the file.

 Write. Write or rewrite the file.

 Execute. Load the file into memory and execute it.

 Append. Write new information at the end of the file.

 Delete. Delete the file and tree its space for possible reuse.

 List. List the name and attributes of the file.

Access Control

 Different users may need different types of access to a file or directory.

 When a user requests access to a particular file, the operating system checks the

access list associated with that file. If that user is listed for the requested access, the

access is allowed. Otherwise, a protection violation occurs, and the user job is

denied access to the file.

 Many systems recognize three classifications of users in connection with each file

for access control

 Owner. The user who created the file is the owner.

 Group. A set of users who are sharing the file and need similar access is a

group, or work group.

 Universe. All other users in the system constitute the universe.

 With the more limited protection classification, only three fields are needed to

define protection. Each field is a collection of bits and each bit allows or prevents

the access associated with it.

Ex: INIX System defines three fields of 3 bits each –rwx

r Controls read access

wControls write access

OS (BCS303)

Dept. of CSD, ATMECE

xControls execution access

Implementing File System

File system structure

 To provide efficient and convenient access to the disks,Os imposes one or more

file system to allow the data to be stored, located and retrieved easily.

 File system itself is composed of many different levels. Layered design is shown

below figure.

 Each level in the design uses the features of lower levels to create new features for

use by higher levels.

 The lowest level, the I/O control, consists of device drivers and interrupt handlers

to transfer information between the main memory and the disk system.

 The basic file system issue generic commands to the appropriate device driver to

read and write physical blocks on the disk.

 The file-organization module knows about files and their logical blocks, as well as

physical blocks. It also includes free-space manager.

 Logical file system manages metadata information. Metadata includes all of the

file-system structure except actual data.

 Most operating system supports more than one type of file system.

OS (BCS303)

Dept. of CSD, ATMECE

File-System implementation

Overview on-disk structure

 Boot control block (per volume) It can contain information needed by the system

to boot an operating system from that volume. If the disk does not contain an

operating system, this block can be empty.

 A volume control block (per volume) contains volume (or partition)details, such

as the number of blocks in the partition, size of the blocks, free block count and

free-block pointers, and free FCB count and FCB pointers.

 A directory structure per file system is used to organize the files.

In-memory information

It is used for both file-system management and performance improvement via

caching. The data are loaded at mount time and discarded at dismount. The structures

described below:

 An in-memory mount table contains information about each mounted volume.

 An in-memory directory-structure cache holds the directory information of

recently accessed directories.

 The system-wide open-file table contains a copy of the FCB of each open file.

 The per-process open-file table contains a pointer to the appropriate entry in the

system-wide open-file table.

 To create a new file, an application program calls the logical file system. The logical

file system knows the format of the directory structures. To create a new file, it

allocates a new FCB. The system then reads the appropriate directory into memory,

updates it with the new file name and FCB, and writes it back to the disk. Atypical

FCB is shown in below Figure

OS (BCS303)

Dept. of CSD, ATMECE

 File must be opened before using it for I/O. The open() call passes a file name to

the file system.

 The open() system call searches the system-wide open-file table to find the file

name given by the user.

 If it is open, a per-process open-file table entry is created pointing to the existing

system-wide open-file table.

 When a file is opened, the directory structure is searched for the given file name

 The open() call returns a pointer to the appropriate entry in the per-process file-

system table. All file operations are performed via this pointer.

 When a process closes the file, the per-process table entry is removed, and system-

wide entry’s open count is decremented

Operating structures of file-system implementation are given in the below fig

OS (BCS303)

Dept. of CSD, ATMECE

Partitions and Mounting

 A disk can be sliced into multiple partitions.

 Each partition can be either "raw," containing no file system, or

"cooked;' containing a file system.

 Boot information can be stored in a separate partition.

 The root partition, which contains the operating-system kernel and

some times other system files, is mounted at boot time.

 Other volumes can be automatically mounted at boot or manually mounted later,

depending on the operating system.

 Operating system notes in its in-memory mount table structure that a file system is

mounted, along with type of the file system.

Virtual File Systems

 Modern operating systems must concurrently support multiple types of file

systems.

 Most operating systems, including UNIX, use object-oriented techniques to

simplify, organize, and modularize the implementation.

OS (BCS303)

Dept. of CSD, ATMECE

 Data structures and procedures are used to isolate the basic system call functionality

from the implementation details. The file- system implementation consists of three

major layers, as depicted schematically in the below Figure

 The virtual file system (VFS) layer, serves two important functions:

1. It separates file-system-generic operations from their implementation by

defining a clean VFS interface. Several implementations for the VFS interface

may coexist on the same machine, allowing transparent access to different types

of file systems mounted locally.

2. The VFS provides a mechanism for uniquely representing a file through out a

network. The VFS is based on a file-representation structure, called an node,

that contains a numerical designator for a network-wide unique file.

 The VFS activates file-system-specific operations to handle local requests

according to their file-system types and even calls the NFS protocol procedures for

remote requests. File handles are constructed from the relevant vnode sand are

passed as arguments to these procedures. The layer implementing the file system

type or the remote-file-system protocol is the third layer of the architecture.

OS (BCS303)

Dept. of CSD, ATMECE

Directory implementation

The selection of directory-allocation and directory-management algorithms

significantly affects the efficiency, performance, and reliability of the file system.

Linear List

 The simplest method of implementing a directory is to use a linear list of

filenames with pointers to the data blocks.

 To create a new file., we must first search the directory to be sure that no existing

file has the same name.

 To delete a file, we search the directory for the named file, then release the space

allocated to it.

 A linked list can also be used to decrease the time required to delete a file.

 The real disadvantage of a linear list of directory entries is that finding a file requires

a linear search. Directory information is used frequently, and users will notice if

access to it is slow.

Hash Table

 Another data structure used for a file directory is a hash table. With this method, a

linear list stores the directory entries, but a hash data structure is also used.

 The hash table takes a value computed from the file name and returns a pointer to

the file name in the linear list.

 Insertion and deletion are also fairly straight forward, although some provision must

be made for collisions—situations in which two file names hash to the same

location.

 The major difficulties with a hash table are its generally fixed size and the

dependence of the hash function on that size.

 Alternatively, a chained-overflow hash table can be used.

OS (BCS303)

Dept. of CSD, ATMECE

Allocation Methods

The direct-access nature of disks allows us flexibility in the implementation of files,

in almost every case, many files are stored on the same disk. The main problem is how to

allocate space to these files so that disk space is utilized effectively and files can be accessed

quickly. Three major methods of allocating disk space are in wide use: contiguous, linked,

and indexed.

Contiguous Allocation

A single set of blocks is allocated to a file at the time of file creation. This is a pre- allocation

strategy that uses portion of variable size. The file allocation table needs just a single entry

for each file, showing the starting block and the length of the file. The figure shows the

contiguous allocation method.

If the file is n blocks long and starts at location b, then it occupies blocks b, b+1,b+2…

b+n

The file allocation table entry for each file indicates the address of starting block

and the length of the area allocated for this file. Contiguous allocation is the best from the

point of view of individual sequential file. It is easy to retrieve a single block. Multiple

blocks can be brought in one at a time to improve I/O performance for sequential

processing. Sequential and direct access can be supported by contiguous allocation.

Contiguous allocation algorithm suffers from external fragmentation. Depending on the

OS (BCS303)

Dept. of CSD, ATMECE

amount of disk storage the external fragmentation can be a major or minor problem.

Compaction is used to solve the problem of external fragmentation. The following figure

shows the contiguous allocation of space after compaction. The original disk was then freed

completely creating one large contiguous space. If the file is n blocks long and starts at

location b, then it occupies blocks b, b+1, b+2…b+n

The file allocation table entry for each file indicates the address of starting block

and the length of the area allocated for this file. Contiguous allocation is the best from the

point of view of individual sequential file. It is easy to retrieve a single block. Multiple

blocks can be brought in one at a time to improve I/O performance for sequential

processing. Sequential and direct access can be supported by contiguous allocation.

Contiguous allocation algorithm suffers from external fragmentation.

Characteristics:

 Supports variable size portion.

 Pre-allocation is required.

 Requires only single entry for a file.

 Allocation frequency is only once.

Advantages:

 Supports variable size problem.

 Easy to retrieve single block.

 Accessing a file is easy. x It provides good performance.

Disadvantage:

 Pre-allocation is required.

 It suffers from external fragmentation.

Linked Allocation:

 It solves the problem of contiguous allocation. This allocation is on the basis of an

individual block. Each block contains a pointer to the next block in the chain.

 The disk block can be scattered any where on the disk.

 The directory contains a pointer to the first and the last blocks of the file.

 The following figure shows the linked allocation. To create a new file, simply

create a new entry in the directory.

OS (BCS303)

Dept. of CSD, ATMECE

There is no external fragmentation since only one block is needed at a time.

The size of a file need not be declared when it is created. A file can continue to grow as

long as free blocks are available.

Advantages:

No external fragmentation.

Compaction is never required.

Pre-allocation is not required.

Disadvantage:

Files are accessed sequentially.

Space required for pointers.

Reliability is not good.

Cannot support direct access.

Indexed Allocation:

The file allocation table contains a separate one level index for each file. The index has one

entry for each portion allocated to the file. The ith entry in the index block points to the i th

block of the file. The following figure shows indexed allocation.

OS (BCS303)

Dept. of CSD, ATMECE

The indexes are not stored as a part of file allocation table rather than the index is kept as

a separate block and the entry in the file allocation table points to that block. Allocation can

be made on either fixed size blocks or variable size blocks. When the file is created all

pointers in the index block are set to nil. When an entry is made a block is obtained from

free space manager. Allocation by fixed size blocks eliminates external fragmentation

where as allocation by variable size blocks improves locality. Indexed allocation supports

both direct access and sequential access to the file.

Advantages:

Supports both sequential and direct access.

No external fragmentation. Faster then other two methods.

Supports fixed size and variable sized blocks.

Disadvantage:

Suffers from wasted space.

Pointer overhead is generally greater

OS (BCS303)

Dept. of CSD, ATMECE

Free space management

 To keep track of free disk space, the system maintains a free space list. The free

space list records all the free disks blocks those not allocated to some file or

directory. We need a disk allocation table in addition to a file allocation table. Four

techniques are in common use-

o Bit vector

o Linked list

o Grouping

o Counting

Bit Vector

 This method uses a vector contain 1 bit for each block on the disk

 Each entry of a “0” corresponds to a free block and each “1” corresponds to a

block in use

 Ex: consider a disk where blocks 2,3,4,4,8 are free and rest of the blocks are

allocated. The free space map would be →

1 1 0 0 0 0 1 1 0

0 1 2 3 4 4 6 7 8

 Main advantage of this method is that it is relatively easy to find one or a contiguous

group of free blocks. Second advantage is that it is as small as possible and can be

kept in main memory.

Linked List

 In linked list, all free space disk blocks are linked, keeping a pointer to the first free

block in a special location on a disk and caching it in memory.

 This method has negligible space overhead because there is no need for a disk

allocation table, merely for a pointer to the beginning of the chain and the length

of the first position.

 This method is suitable for all file allocation methods.

Grouping

 It stores the address of n free blocks in the first free block

 The first n-1 of these blocks are actually free. The last block contains the

addresses of another n free blocks.

 Addresses of a large number of free blocks can be found quickly.

OS (BCS303)

Dept. of CSD, ATMECE

Counting

 It keeps the address of the first free blocks and the number n of free contiguous

blocks that follow the first block.

 Each entry in the free space list then consists of a disk address and a count.

Mass Storage Structure

Magnetic Disks

 Magnetic disks provide the bulk of secondary storage for modern computer

systems.

 Each disk platter has a flat circular shape like a CD. The two surfaces of a platter

are Covered with a magnetic material.

OS (BCS303)

Dept. of CSD, ATMECE

 We store information by recording it magnetically on the platters.

 A Read-write head files just above each surface of every platter. The heads are

attached to a disk arm that moves all the heads as a unit.

 Surface of a platter is logically divided into circular track which are subdivided

into sectors.

 When the disk is in use, a drive motor spins it at high speed. Most drivers rotate

60 to 200 times per second.

 A disk can be removable, allowing different disks to be mounted as needed

Ex: floppy disks.

Magnetic Tapes

 Magnetic tape was used as all early secondary-storage medium. Its access time is

slow when compared to main memory and magnetic disk.

 Random access to magnetic tape is slower than disk so it is not very useful for

secondary storage.

 Tapes are used for backup and to store infrequently accessed data.

OS (BCS303)

Dept. of CSD, ATMECE

Disk Structure

 Disk drives are addressed as large one-dimensional arrays of logical blocks.

 Size of logical blocks is mapped onto the sectors of the disk sequentially.

 These logical blocks are mapped onto the sectors of the disk sequentially.

Disk Attachment

Computers access disk storage in two ways

1. Via I/O ports(host attached storage)

2. Via a remote host in a distributed file system(network attached storage)

Host Attached Storage

 Host-attached storage is storage accessed through local I/O ports.

 High-end workstations and servers use more sophisticated I/O architectures like

SCSI and Fiber channel (FC).

 SCSI supports 16 devices on the bus.

 Fiber-channel is a high-speed serial architecture that can operate over optical

fiber.

 A wide variety of storage devices are suitable for use as host-attached storage.

 Ex: RAID arrays, CD, DVD….etc

Network-Attached Storage

 A network-attached storage (NAS) device is a special-purpose storage system that

is accessed remotely over a data network.

 Clients access network–attached storage via a remote-procedure-call interface

Ex: NFS for UNIX and

CIFS for WINDOWS

 The remote procedure calls are carried via TCP or ODP over all IP network.

 ISCSI is the latest network-attached storage protocol.

OS (BCS303)

Dept. of CSD, ATMECE

Storage-Area Network

 A storage-area network(SAN) is a private network connecting servers and storage

units as shown in the above figure

 Multiple hosts and multiple storage arrays can attach to the same SAN, and

storage can be dynamically allocated to hosts

 A SAN switch allows or prohibits access between the hosts and the storage.

 SAN’s have more ports and less expensive ports than storage arrays.

 Fiber channel is used to interconnect multiple storage area networks.

Disk Scheduling

Disk access time has two major components

Seek Time: It is the time for the disk arm to move the heads to the cylinder containing the

desired sector.

OS (BCS303)

Dept. of CSD, ATMECE

Rotational Latency: It is the additional time for the disk to rotate the desired sector to the

disk head.

Disk Bandwidth: It is the total number of bytes transferred, divided by the total time

between the first request for service and the completion of last transfer

Whenever a process needs I/O from the disk, it issues a system call to the operating

system of the desired disk drive available, the request can be serviced immediately. If the

driver is busy, request will be placed in the queue. When one request is completed, OS

chooses another pending request to service next. Several disk scheduling are used for this

purpose.

FCFS Scheduling

Queue=98, 83, 37,122,14,124,65,67

Head starts at 53

 Simplest form of disk scheduling

 Generally doesn’t provide fastest service

 Ex: A disk queue with requests for I/O to blocks on cylinders98, 183,

37,122,14,124,65,67 disk heard is initially at cylinder 53

It will first move from 53 to 98, then to 183,37,122,14,124,65 and 67 for a total

head movement of 640 cylinders.

OS (BCS303)

Dept. of CSD, ATMECE

SSTF Scheduling (Short-seek-Time-First)

 SSTF assumes that it is better to service all the requests close to the current head

position before moving the head for away to service other requests.

 SSTF choose the pending request closest to the current head position.

For the queue 9, 7, 183, 37, 122, 14, 124, 65, 67 with head position = 53

Closest request to the initial head position is 65. Once we are at cylinder 65 next

request served is 67 next is 37

This scheduling results in a total head movement of only 236 cylinders

 SSTF may cause starvation of some process.

SCAN Scheduling (Elevator algorithm)

 In SCAN algorithm, the disk arm starts at one end of the disk and moves toward

the other end, servicing requests as it reaches each cylinder, until it get to other end

of the disk. At the other end, the direction of head movement is reversed and

servicing continues.

 Head continuously scans back and forth across the disk.

 Consider requests 98, 183, 37, 122, 14, 124, 65 and 67 head position = 53

 For this algorithm we need to know the direction of head movement

 If the disk arm is moving towards 0, the head will service 37 and then 14.

 At cylinder 0, the arm will reverse and move towards the other end servicing the

requests at 65, 67, 98, 122, 124 and 183

OS (BCS303)

Dept. of CSD, ATMECE

C-Scan Scheduling

 Circular SCAN (C-SCAN) Scheduling is a variant of SCAN designed to provide a

more uniform wait time.

 C-SCAN moves the head from one end of the disk to the other, servicing requests

along the way.When the head reaches the other end, it immediately returns to the

beginning of the disk, without servicing any requests on the return trip.

Look Scheduling

 In this disk arm does not move across the full width of the disk.

 The arm goes only as far as the final request in each direction .Then it reverses

direction immediately, without going all the way to the end of the disk. Version of

SCAN and C-SCAN that follows this pattern are called LOOK and C-LOOK

Scheduling.

OS (BCS303)

Dept. of CSD, ATMECE

Selection Of Disk Scheduling Algorithm

 SSTF is a common scheduling algorithm because it increases performance over

FCFS.

 SCAN and C-SCAN used in the heavily loaded disk because these avoids

starvation problem.

 File-allocation method must be considered while selecting scheduling algorithm.

 The location of directories and index blocks is also plays an important role in

selecting scheduling algorithm.

Disk Management

OS is responsible for several disk management activities like

a) Disk formatting

b) Boot block

c) Bad blocks

Disk Formatting

 A new magnetic disc is a blank slate, before a disk can store data, it must be divided

into sectors that the disk controllers can read and write. This process is called ”Low

level formatting “or “Physical formatting”.

 Low–level formatting fills the disk with a special data structure for each sector.It

consists of a header, data–area and a trailer.

OS (BCS303)

Dept. of CSD, ATMECE

 To use a disk to hold files,the OS needs to record its own data structures on the

disk.Two steps involved in this process are

o Partition: The disks into one or more groups of cylinders .The OS can treat

each partition as it were a separate disk.

o Logical formatting: In this step, OS stores the initial –file-system data

structure onto the disk.

Boot Block

 Initial bootstrap program is required for a computer to start running. It initializes

the system and then starts the OS.

 Boot strap program finds the OS kernel on disk, loads that kernel into memory

and jumps to an initial address to begin the OS execution.

 It is stored in Read Only Memory (ROM).

 Most systems store a tiny bootstrap program in the boot ROM whose job is to

bring in a full bootstrap program from disk.

 Full bootstrap program is stored in “the boot blocks” at a fixed location on the

disk

 A disk that has boot partition is called a Boot disk or System disk.

Bad Blocks

 Because disks have moving parts and small tolerances they are prone to

failures.Failure may effect complete disk or it may effect one or two sectors. Most

disks even come from factory with “bad blocks”

 On simple disks bad blocks are handled manually. If blocks go bad during normal

operation. A special program like chkdsk must be run manually to search for the

bad blocks and to lock them. Data that resided on the bad blocks usually are lost.

 In sophisticated disks like SCSI, controller maintains a list of bad blocks on the disk

. The controller can be told to replace each bad sector logically with one of the spare

sectors. This scheme is known as “ Sector Sparing ” or “ Forwarding ”.

OS (BCS303)

Dept. of CSD, ATMECE

Swap - Space Management

Swap - Space Use

 Amount of Swap Space needed on a system can vary depending on the amount of

physical memory, amount of virtual memory, way in which virtual memory is used

etc.

 It is safer to over estimate than to underestimate the amount of Swap Space required,

because If system runs out of space it may abort processes. Overestimate writer disk

space but it will not cause any harm.

Swap - Space Location

 Swap Space can reside in one of two places. It can be carved out of the normal file

system or it can be in a separate disk partition.

 If the Swap Space is a large file within the file system, normal file - system routines

can be used to create it, name it and allocate its space.

 Swap Space can be created in a separate raw partition. A separate Swap Sp0ace

storage manager is used to allocate and de allocate the blocks from the raw partition.

Swap - Space Management: An Example

 In Solaris 1, when a process executer text - segment pages containing code are

brought in form the file system, accused in main memory, and thrown away if select

for page out.

 It is more efficient to reread a page from the file system than to write it to Swap

Space and then reread it from there.

 Swap Space is only used as a backing store for pages of anonymous memory, which

includes memory allocated for the stack, heap and uninitialized data of a process.

SYSTEM PROTECTION

Goals of Protection

Need of protection

 Prevention of mischievous, intentional violation of an access restriction by a user.

 Ensures that each program component in a system uses system resources

OS (BCS303)

Dept. of CSD, ATMECE

according to stated policies.

 Protection can improve reliability by detecting latent errors at the interfaces

between component subsystems.

 A protection - oriented system provides means to distinguish between authorised

and un authorized usage.

 Role of protection in a computer system is to provide a mechanism for the

enforcement of the policies governing resource use.

Principles of Protection

 Guiding principle for protection is the “Principle Of Least Privilege ”. It dictates

that programme, users and even system be given just enough privileges to perform

their tasks.

 Principle of least privilege implements programs, system calls in such a way that

failure of a component does the minimum damage.

 It provides mechanisms to enable privileges when they are needed and to disable

them when they are not needed.

Domain of Protection

 A computer system is a collection of processes and objects (Hardware and software

objects)

 The operations that are possible may depend on the object. A process should be

allowed to access only those resources for which it has authorization.

 At anytime, a process should be able to access only those resources that it currently

requires to complete are task. This is referred as “Need-to-Know” principle. It limits

the amount of damage caused by faulty process.

OS (BCS303)

Dept. of CSD, ATMECE

Domain Structure

 A process operates within a Protection Domain which specifies the resources that

the process may access.

 Each domain defines a set of objects and the types of operations that may be

invoked on each object.

 Ability to execute are operation on an object is all “ Access Right ”

 A domain is a collection of access rights. It is denoted by ordered pair-

 ˂object-name, right-set ˃

 ˂O3, {read, write}˃

 Domains may share access rights.

 Association between a process and a domain may be static or dynamic.

 Dynamic association supports domain switching i.e.., it enables the process to

switch from one domain to another.

A domain can be realized in a variety of ways:

Each user may be a domain. In this case the set of objects that can be accessed

depends on the identity of the user. Domain switching occurs when one user logs

out and another user logs in.

 Each process may be a domain. Domain switching occurs when one process and

then waits for a response.

 Each producer may be a domain. Domain switching occurs when a procedure call

is made.

Domain example in UNIX

 In UNIX Operating system, domain is related with the user. The kernel associates

two user ID with a process, independent of the process ID.

OS (BCS303)

Dept. of CSD, ATMECE

They are-

Real user ID & effective user ID or setuid.

 The real user ID identifies the user who is responsible for the running process. The

effective user ID is used to assign ownership of newly created files, to check file

access permission and to check permission to send signals to processes via the kill

system call.

 An owner identification and a domain bit are associated with each file. A setuid

program is an executable file that has the setuid bit set in its permission mode field.

 Domain switch is accomplished via file system. Each file has a setuid flag. When

setuid flag is set, current user ID set to file owner of program being executed, and

reset on exit.

Domain example in multics

 Protection of domains are organized hierarchically into a ring structure.

 Rings are numbered from 0 to ring N-1. Each ring is a single domain.

 Let us consider any two domain rings, i .e, Di&Dj. If value of j is less than i (j<i),

then domain Di is subset of domain Dj. The process executing in domain Dj has more

privileges than does a process executing in domain Di. Ring 0 has full privileges.

 Ring 1 is a subset of Ring 0. Domain switches is accomplished via access gates.

OS (BCS303)

Dept. of CSD, ATMECE

 Disadvantage of ring structure is that it does not allow us to enforce the need-to-

know principle.

 Information in each domain is ordinarily stored in files.

 Ring authority is

o Inner rings have higher priority

o Ring 0 corresponds to supervisor mode.

o Ring 1 to s have decreasing protection and used to implement the

operating system.

o Ring s+1 to N-1 have decreasing protection and used to implement

applications.

Access Matrix

 Access matrix is used to implement the protection. Domain is represented by rows

of access matrix. Object is represented by columns of access matrix. Each entry in

the matrix consists of a set of access rights.

 The entry access (i,j) defines the set of operations that a process executing in

Domain Di can invoke on object Oj.

 Below fig. shows the access matrix.

-The access matrix consists of four domains, four objects, three files and one printer. The

summary of access matrix is as follows:

 Process in domain D1 can read files F1 and files F3.

 Process in domain D2 can only use printer.

OS (BCS303)

Dept. of CSD, ATMECE

 Process in domain D3 can read file F2 and execute file F3.

 Process in domain D4 can read and write file F1 and file F3.

 Access matrix scheme provides us with the mechanism for specifying a variety of

policies. Mechanism consists of implementing the access matrix.

 Access matrix implements policy decisions concerning protection. Policy decisions

involve which rights should be include in the (i, j)th entry. We must also decide the

domain in which each process executes.

 When a user creates a new object Oj, the column Oj is added to the access matrix.

Blank entries indicate no access rights. A process is switched from one domain to

another domain by executing switch operation on the object.

 Each entry in the access matrix may be modified individually. Domain switch is

only possible if and only if the access right switch ∈ access (i, j).

 Below fig shows the access matrix with domains as objects. Process can change

domain as follows-

 Process in domain D2 can switch to domain d3 and domain D4.

 Process in domain D4 can switch to domain D1.

 Process in domain D1 can switch to domain D2.

o Access matrix are inefficient for storage of access rights in computer system

because they tend to be large and sparse.

o Column oriented list is called Access Control List(ACL).Unix uses access

control list for file protection. Row oriented list is called a capability list.

List kept with the subject

OS (BCS303)

Dept. of CSD, ATMECE

Implementing Access matrix

It is implemented in several ways. Methods for implementing access matrix are-

1. Global table.

2. Access lists for objects.

3. Capability.

4. A lock key mechanism.

1. Global Table

 One of the simplest method for implementation of access matrix. Global table

consists of domain, object and right set. The order of syntax is < domain, object,

right-set >

 If operation P is executed on an object Oj within domain Dj the global table is

searched for a triple-

<Dj, Oj, Rk> with P∈ Rk

 If the above triple is found, then operation is allowed to continue.

 If suppose triple is not found then an exception error condition occurs.

Limitation of Global table

 Global table is large.

 Global table can not be kept in memory and additional Input/ Output required.

2. Access list for objects

 Matrix is decomposed by columns, yielding access control list. For each object, lists

users and their permitted access rights.

 Access list are frequently used in file systems. In systems that employ access lists,

a separate list is maintained for each object.

 Only the owner has the authority to modify and define the access list. Deleting the

related entry in the access list is possible by owner for granting to the particular

subject or domain.

 In UNIX operating system, access lists are reduced to three entries per file, one

each for the owner, group and all other user.

OS (BCS303)

Dept. of CSD, ATMECE

Capability

 Each row is associated with its domain.

 A capability list for a domain is a list of objects together with the operations

allowed on those objects.

 An object is often represented by its physical name or address, called a Capability.

 To execute operation H, specifying the capability(or pointer) for object OS as a

parameter.

 Capabilities are distinguished from other data in two ways-

o Each object has a tag to denote its type as either a capability or as accessible

data.

o The address space associated with a program can be split into two parts. One

part is accessible to the program and contains the programs normal data and

instructions.

o The other part containing the capability list is accessible only by the

operating system.

A Lock –Key Mechanism

 The lock key scheme is a compromise between axis list and capability list.

 Each object has a list of unique bit patterns called locks and each domain has a list

of unique bit patterns called keys.

 A process executing in a domain can access an object only if the domain has a key

that matches one of the locks of the object.

 Users are not allowed to examine or to modify the list of keys directly.

Comparison

 Global table is simple but table can be quite large and cannot take advantage of

special groupings of objects or domains.

 Access lists corresponds directly to the needs of users. But determining the set of

access rights of a particular domain is difficult.

 Capability lists do not correspond directly to the needs of users. They are useful

for localizing information for a given process.

 Lock-Key mechanism is a compromise between access lists and capability lists.

The mechanism can be effective and flexible depending on the length of the keys.

OS (BCS303)

Dept. of CSD, ATMECE

Access Control

 Role-based Access control(RBSC) FACILITY revolves around privileges.

 A privilege is the right to execute a system call or to use an option within that system

call. Privileges can be assigned to process or roles.

 Users are assigned roles or can take roles based on passwords to the roles. In this

way a user can take a role that enables a privilege allowing the user to run a program

to accomplish a specific task as shown in the figure.

Revocation Of Access Rights

 Revocation of access rights to objects in shared environment is possible.

Following parameters are considered for revocation of access rights

o Immediate and delayed

o Selective and general

o Partial and total

o Temporary and permanent

 Revocation is easy for access list and complex for capabilities list. The access

rights to be revoked and they are deleted from the list.

OS (BCS303)

Dept. of CSD, ATMECE

	DEPARTMENT OF COMPUTER SCIENCE AND DESIGN (ACADEMIC YEAR 2023-24)
	INSTITUTIONAL MISSION AND VISION
	MODULE 1
	Introduction
	What operating systems do
	Computer system components
	Role of operating System with user and system view points
	System view
	Operating System Definition:

	Computer System Organization
	Computer System Operation
	Common Function of Interrupts
	Interrupt Handling
	Storage structures
	Caching:
	I/O structure
	Interrupt-Driven I/O
	Direct Memory Access(DMA)

	Computer System Architecture
	Single Processor system:
	Multi processor system (Parallel systems or Tightly coupled systems):
	Advantages of Multi Processor Systems:

	Operating System Structure
	Time sharing (Multi Tasking)

	Operating System Operations
	Dual mode
	Timer

	Process Management
	Process Management Activities

	Memory Management
	Memory Management Activities

	Storage Management
	File system Management
	File System Management Activities
	Mass Storage Management
	Mass storage management Activities

	Protection and security
	Distributed Systems
	Special-Purpose Systems
	Real-Time Embedded Systems
	Multimedia Systems
	Handheld Systems

	Computing Environments
	Traditional Computing
	Client-server computing
	Peer-to-Peer Computing
	Web-Based Computing

	Operating system services
	a) user interface
	b) Program Execution
	c) I/O operations
	d) File-System Manipulation
	e) Communications
	f) Error Detection
	a) Resources Allocation
	b) Accounting
	c) Protection and Security

	User Operating System Interface
	Command Interpreters
	Graphical User Interface
	System calls

	Types of System Calls
	 Process control
	 File Management
	 Device Management
	 Information Maintenance
	 Communications
	Process Control
	File Management
	Device Management

	System Programs
	 File Management
	 Status Information
	 File Modification
	 Programming Language Support
	 Program Loading and Execution
	 Communications

	OS Design and Implementation
	Design Goals
	Mechanisms and Policies
	Implementation

	Operating system structure
	Simple Structure
	Layered approach
	Micro kernels
	Modules

	Virtual machines
	The Java Virtual Machine

	Operating System Generation
	System Booting
	Assignment Questions

	Outcome
	Further Reading
	Introduction (1)
	The Process Concept
	The Process
	Process states
	Process Control Block (Task Control Block)
	Threads

	Process Scheduling
	Scheduling Queues
	Schedulers
	Context Switch

	Operations on Processes
	Process Creation
	Process Termination

	Inter process Communication
	Independent process:
	Co-Operating Process:
	Shared-Memory Systems
	Synchronization
	Buffering

	Multithreaded Programming
	Overview

	Multithreading Models
	Many-to-one Model:
	One-to-One Model:

	Thread Libraries
	Threading Issues
	Cancellation
	Thread pools

	Process Scheduling (1)
	CPU-I/O Burst Cycle
	CPU Scheduler
	Preemptive Scheduling and Non-Preemptive Scheduling
	Dispatcher

	Scheduling Criteria
	Scheduling Algorithms
	First-Come, First-Served Scheduling
	Shortest-Job-First Scheduling
	(shortest-job-first (SJF) schedulingalgorithm.)
	Preemptive SJF problem
	Non Preemptive

	Priority Scheduling
	Round-Robin Scheduling

	Multiple-Processor Scheduling
	Symmetric multiprocessing
	Processor Affinity
	Load Balancing
	Symmetric Multithreading

	Thread Scheduling
	Contention Scope

	Multiple-Processor Scheduling (1)
	Algorithm Evaluation

	Assignment Questions

	Outcome (1)
	Further Reading (1)
	Introduction (2)
	Objective
	SYNCHRONIZATION
	Since processes frequently need to communicate with other processes therefore, there is a need for a well-structured communication, without using interrupts, among processes.
	Race Conditions
	In operating systems, processes that are working together share some common storage (main memory, file etc.) that each process can read and write. When two or more processes are reading or writing some shared data and the final result depends on who r...
	executing threads that share data need to synchronize their operations and processing in order to avoid race condition on shared data. Only one ‘customer’ thread at a time should be allowed to examine and update the shared variable. Race conditions ar...
	If the ready queue is implemented as a linked list and if the ready queue is being manipulated during the handling of an interrupt, then interrupts must be disabled to prevent another interrupt before the first one completes. If interrupts are not di...
	1. count++ could be
	implemented as
	register1 =
	count register
	1 = register 1 + 1
	count =register 1
	2.count--could be implemented
	as register
	2 = count register
	2 = register2 – 1 count = register2
	3.Consider this execution interleaving with “count = 5” initially:
	S0: producer execute register1 = count {register1 = 5}
	S1: producer execute register1 = register1 + 1 {register1 = 6}
	S2: consumer execute register2 = count {register2 = 5}
	S3: consumer execute register2 = register2 -1 {register2 = 4}
	S4: producer execute count = register1 {count = 6 }
	S5: consumer execute count = register2 {count = 4}.
	THE CRITICAL SECTION PROBLEM
	Mutual Exclusion -If process Pi is executing in its critical section, then no other processes can be executing in their critical sections
	1. Progress -If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely
	2.Bounded Waiting -A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its criticalsection and before that request is granted
	• Assume that each process executes at a nonzero speed
	• No assumption concerning relative speed of the N processes
	The key to preventing trouble involving shared storage is find some way to prohibit more than one process from reading and writing the shared data simultaneously. That part of the program where the shared memory is accessed is called the Critical Sect...
	3. MUTUAL EXCLUSION
	A way of making sure that if one process is using a shared modifiable data, the other processes will be excluded from doing the same thing. Formally, while one process executes the shared variable, all other
	processes desiring to do so at the same time moment should be kept waiting; when that process has
	finished executing the shared variable, one of the processes waiting; while that process has finished executing the shared variable, one of the processes waiting to do so should be allowed to proceed. In this fashion, each process executing the shared...
	Note that mutual exclusion needs to be enforced only when processes access shared modifiable data when processes are performing operations that do not conflict with one another they should be allowed to proceed concurrently.
	Mutual Exclusion Conditions
	If we could arrange matters such that no two processes were ever in their critical sections simultaneously, we could avoid race conditions. We need four conditions to hold to have a good solution for the critical section problem (mutual exclusion).
	• No two processes may at the same moment inside their critical sections.
	No assumptions are made about relative speeds of processes or number of CPUs.
	• No process should outside its critical section should block other processes.
	• No process should wait arbitrary long to enter its critical section.
	PETERSON’S SOLUTION
	The mutual exclusion problem is to devise a pre-protocol (or entry protocol) and a postprotocol (or exist protocol) to keep two or more threads from being in their critical sections at the same time. Tanenbaum examine proposals for critical-section pr...
	Problem
	When one process is updating shared modifiable data in its critical section, no other process should allowed to enter in its critical section.
	Proposal 1 -Disabling Interrupts (Hardware Solution)
	Proposal 2 -Lock Variable (Software Solution)
	Proposal 3 -Strict Alteration
	The Bounded Buffer Producers and Consumers

	SYNCHRONIZATION HARDWARE
	SEMAPHORES
	CLASSICAL PROBLEMS OF SYNCHRONIZATION
	MONITORS
	Producer-Consumer Problem Using Semaphores
	DEADLOCK
	SYSTEM MODEL
	DEADLOCK CHARACTERIZATION
	 Mutual exclusion
	 Hold and wait
	 No preemption
	 Circular wait.
	Resource-Allocation Graph

	Methods for Handling Deadlocks
	Deadlock Prevention
	 Mutual exclusion
	 Hold and wait
	 No preemption
	 Circular wait

	Deadlock Avoidance
	Safe State
	Available 3

	Resource-Allocation-Graph Algorithm
	Banker's Algorithm
	Safety Algorithm
	Resource-Request Algorithm
	Disadvantages of Bomker’s Algorithm

	Deadlock Detection
	Single Instance of Each Resource Type
	Several Instances of a Resource Type

	Recovery From Deadlock
	Process Termination
	Resource Preemption

	Assignment Questions
	6. Allocation request available
	(12) dec 2010, june 2011.
	VTU question paper questions

	OTHER IMPORTANT QUESTIONS:

	Outcome
	Further Reading

	MODULE 4:
	Logical Versus Physical Address Space
	Dynamic Loading
	Dynamic Linking and Shared Libraries
	Contiguous Memory Allocation
	Memory Mapping and Protection
	Memory Allocation

	Memory
	Memory (1)
	Memory (2)
	Fragmentation
	Basic Method
	apage offset (d).

	Hardware Support
	“Working of TLB”

	Protection
	Shared Pages
	Structure of the Page Table
	Hierarchical Paging [Forward – mapped Page table]
	Hashed Page Tables
	Inverted Page Tables

	Segmentation
	Hardware

	Introduction
	Objective
	Demand Paging
	page-fault trap
	Performance of Demand Paging

	Copy-on-Write
	Page Replacement
	Working of Page Replacement Algorithm

	FIFO Page Replacement
	Belady's anomaly:
	Optimal Page Replacement

	LRU Page Replacement
	LRU-Approximation Page Replacement
	Additional-Reference-Bits Algorithm
	Second-Chance Algorithm
	Enhanced Second-Chance Algorithm
	Counting-Based Page Replacement
	Page-Buffering Algorithms
	Applications and Page Replacement

	Allocation of Frames
	Minimum Number of Frames
	Allocation Algorithms
	Equal Allocation
	Proportional Allocation

	Global versus Local Allocation

	Thrashing
	Working-Set Model

	MODULE 5
	File System, Implementation of File System
	FILE STRUCTURE
	File Concept
	File Attributes
	File Operations
	Writing a file :
	Reading a file :
	Delete a file:
	Truncating a file:
	Repositioning within a file :

	File Types

	Access Methods
	Direct Access
	Other Access Methods

	Directory Structure
	Single-Level Directory
	Two-Level Directory
	Tree-Structured Directories
	Acyclic-Graph Directories
	General Graph Directory

	File-System Mounting
	File Sharing
	Multiple Users

	Protection
	Types of Access
	Access Control

	Implementing File System
	File system structure

	File-System implementation
	Overview on-disk structure
	In-memory information

	Partitions and Mounting
	Virtual File Systems

	Directory implementation
	Linear List
	Hash Table

	Allocation Methods
	Contiguous Allocation
	Characteristics:
	Advantages:
	Disadvantage:
	Linked Allocation:
	Advantages: (1)
	Disadvantage: (1)
	Indexed Allocation:
	Advantages: (2)
	Disadvantage: (2)

	Free space management
	Bit Vector
	Linked List
	Grouping
	Counting

	Mass Storage Structure
	Magnetic Disks

	Disk Structure
	Disk Attachment
	SSTF Scheduling (Short-seek-Time-First)
	SCAN Scheduling (Elevator algorithm)
	C-Scan Scheduling
	Look Scheduling
	Selection Of Disk Scheduling Algorithm

	Disk Management
	Disk Formatting
	Boot Block
	Bad Blocks

	Swap - Space Management
	Swap - Space Use
	Swap - Space Location
	Swap - Space Management: An Example

	SYSTEM PROTECTION
	Goals of Protection
	Need of protection

	Principles of Protection
	Domain of Protection
	Domain Structure
	Domain example in UNIX
	Domain example in multics

	Access Matrix
	Implementing Access matrix
	1. Global Table
	Limitation of Global table
	2. Access list for objects
	Capability
	A Lock –Key Mechanism
	Comparison

	Access Control
	Revocation Of Access Rights

